

Getting started

The tools for your .cools

Chromosome conformation capture technologies reveal the incredible complexity of genome folding. A growing number of labs and multiple consortia, including the 4D Nucleome, the International Nucleome Consortium, and ENCODE, are generating higher-resolution datasets to probe genome architecture across cell states, types, and organisms. Larger datasets increase the challenges at each step of computational analysis, from storage, to memory, to researchers’ time. The recently-introduced cooler [https://github.com/open2c/cooler/tree/master/cooler] format readily handles storage of high-resolution datasets via a sparse data model.

cooltools leverages this format to enable flexible and reproducible analysis of high-resolution data. cooltools provides a suite of computational tools with a paired python API and command line access, which facilitates workflows either on high-performance computing clusters or via custom analysis notebooks. As part of the Open2C ecosystem [https://open2c.github.io/], cooltools also provides detailed introductions to key concepts in Hi-C-data analysis with interactive notebook documentation.

If you use cooltools in your work, please cite cooltools: https://doi.org/10.1101/2022.10.31.514564.

Installation

Requirements

	Python 3.7+

	Scientific Python packages

Install using pip

Compile and install cooltools and its Python dependencies from
PyPI using pip:

$ pip install cooltools

or install the latest version directly from github:

$ pip install https://github.com/open2c/cooltools/archive/refs/heads/master.zip

Install the development version

Finally, you can install the latest development version of cooltools from
github. First, make a local clone of the github repository:

$ git clone https://github.com/open2c/cooltools

Then, you can compile and install cooltools in
development mode [https://setuptools.readthedocs.io/en/latest/setuptools.html#development-mode],
which installs the package without moving it to a system folder and thus allows
immediate live-testing any changes in the python code.

$ cd cooltools
$ pip install -e ./

Tutorials

	Visualization

	Contacts vs distance

	Compartments & Saddleplots

	Insulation & boundaries

	Dots & focal enrichment

	Pileups and average features

	Command line interface

Note that these notebooks currently focus on mammalian interphase Hi-C analysis, but are readily extendible to other organisms and cellular contexts. To clone and work interactively with these notebooks, visit: https://github.com/open2c/open2c_examples.

Reference

	CLI Reference

	API Reference

	Release notes

Visualization

Welcome to the cooltools visualization notebook!

Visualization is a crucial part of analyzing large-scale datasets. Before performing analyses of new Hi-C datasets, it is highly recommend to visualize the data. This notebook contains tips and tricks for visualization of coolers using cooltools.

Current topics:

	Inspecting C-data stored in coolers

	Visualizing C-data with matplotlib

	Balancing: filtering bins, biases

	Coverage: cis/total profiles

	Smoothing, interpolation, and adaptive coarsegraining

Future topics:

	higlass-python

	translocations, structural variants

	visualizing matrices for other organisms

[1]:

import standard python libraries
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import os

[2]:

download test data
this file is 145 Mb, and may take a few seconds to download
import cooltools
data_dir = './data/'
cool_file = cooltools.download_data("HFF_MicroC", cache=True, data_dir=data_dir)
print(cool_file)

./data/test.mcool

[3]:

#import python package for working with cooler files: https://github.com/open2c/cooler
import cooler

Inspecting C data

The file we just downloaded, test.mcool, contains Micro-C data from HFF cells for two chromosomes in a multi-resolution mcool format [https://cooler.readthedocs.io/en/latest/schema.html?highlight=mcool#multi-resolution].

[4]:

to print which resolutions are stored in the mcool, use list_coolers
cooler.fileops.list_coolers(f'{data_dir}/test.mcool')

[4]:

['/resolutions/1000',
 '/resolutions/10000',
 '/resolutions/100000',
 '/resolutions/1000000']

[5]:

to load a cooler with a specific resolution use the following syntax:
clr = cooler.Cooler(f'{data_dir}/test.mcool::resolutions/1000000')

to print chromosomes and binsize for this cooler
print(f'chromosomes: {clr.chromnames}, binsize: {clr.binsize}')

to make a list of chromosome start/ends in bins:
chromstarts = []
for i in clr.chromnames:
 print(f'{i} : {clr.extent(i)}')
 chromstarts.append(clr.extent(i)[0])

chromosomes: ['chr2', 'chr17'], binsize: 1000000
chr2 : (0, 243)
chr17 : (243, 327)

Coolers store pairwise contact frequencies in sparse format, which can be fetched on demand as dense matrices. clr.matrix returns a matrix selector. The selector supports Python slice syntax [] and a .fetch() method. Slicing clr.matrix() with [:] fetches all bins in the cooler. Fetching can return either balanced, or corrected, contact frequences (balance=True), or raw counts prior to bias removal (balance=False).

In genome-wide C data for mammalian cells in interphase, the following features are typically observed:

	Higher contact frequencies within a chromosome as opposed to between chromosomes; this is consistent with observations of chromosome territories. See below.

	More frequent contacts between regions at shorter genomic separations. Characterizing this is explored in more detail in the contacts_vs_dist [https://github.com/open2c/open2c_examples/blob/master/contacts_vs_distance.ipynb] notebook.

	A plaid pattern of interactions, termed compartments. Characterizing this is explored in more detail in the compartments [https://github.com/open2c/open2c_examples/blob/master/???.ipynb] notebook.

Each of these features are visible below.

Visualizing C data

Plotting raw counts

First, we plot raw counts with a linear colormap thresholded at 500 counts for the entire cooler. Note that the number of counts per cooler depends on the sequencing depth of the experiment, and a different threshold may be needed to see the same features.

[6]:

f, ax = plt.subplots(
 figsize=(7,6))
im = ax.matshow((clr.matrix(balance=False)[:]),vmax=500);
plt.colorbar(im ,fraction=0.046, pad=0.04, label='raw counts')
ax.set(xticks=chromstarts, xticklabels=clr.chromnames,
 xlabel='position, chrom#', ylabel='position, bin#')
ax.xaxis.set_label_position('top')

[image: ../_images/notebooks_viz_12_0.png]

Plotting subregions

Below, we fetch and plot an individual chromosome (left) and a region of a chromosome (right) using clr.fetch()

[7]:

to plot ticks in terms of megabases we use the EngFormatter
https://matplotlib.org/gallery/api/engineering_formatter.html
from matplotlib.ticker import EngFormatter
bp_formatter = EngFormatter('b')

def format_ticks(ax, x=True, y=True, rotate=True):
 if y:
 ax.yaxis.set_major_formatter(bp_formatter)
 if x:
 ax.xaxis.set_major_formatter(bp_formatter)
 ax.xaxis.tick_bottom()
 if rotate:
 ax.tick_params(axis='x',rotation=45)

f, axs = plt.subplots(
 figsize=(14,4),
 ncols=3)

ax = axs[0]
im = ax.matshow(clr.matrix(balance=False)[:], vmax=2500);
plt.colorbar(im, ax=ax ,fraction=0.046, pad=0.04, label='raw counts');
ax.set_xticks(chromstarts)
ax.set_xticklabels(clr.chromnames)
ax.set_yticks(chromstarts)
ax.set_yticklabels(clr.chromnames)
ax.xaxis.tick_bottom()
ax.set_title('All data')

ax = axs[1]
im = ax.matshow(
 clr.matrix(balance=False).fetch('chr17'),
 vmax=2500,
 extent=(0,clr.chromsizes['chr17'], clr.chromsizes['chr17'], 0)
);
plt.colorbar(im, ax=ax ,fraction=0.046, pad=0.04, label='raw counts');
ax.set_title('chr17', y=1.08)
ax.set_ylabel('position, Mb')
format_ticks(ax)

ax = axs[2]
start, end = 30_000_000, 60_000_000
region = ('chr17', start, end)
im = ax.matshow(
 clr.matrix(balance=False).fetch(region),
 vmax=2500,
 extent=(start, end, end, start)
);
ax.set_title(f'chr17:{start:,}-{end:,}', y=1.08)
plt.colorbar(im, ax=ax ,fraction=0.046, pad=0.04, label='raw counts');
format_ticks(ax)
plt.tight_layout()

[image: ../_images/notebooks_viz_14_0.png]

Logarithmic color scale

Since C data has a high dynamic range, we often plot the data in log-scale. This enables simultaneous visualization of features near and far from the diagonal in a consistent colorscale. Note that regions with no reported counts are evident as white stripes at both centromeres. This occurs because reads are not uniquely mapped to these highly-repetitive regions. These regions are masked before matrix balancing.

[8]:

plot heatmaps at megabase resolution with 3 levels of zoom in log-scale with a consistent colormap#
from matplotlib.colors import LogNorm

f, axs = plt.subplots(
 figsize=(14,4),
 ncols=3)
bp_formatter = EngFormatter('b')
norm = LogNorm(vmax=50_000)

ax = axs[0]
im = ax.matshow(
 clr.matrix(balance=False)[:],
 norm=norm,
)
plt.colorbar(im, ax=ax ,fraction=0.046, pad=0.04, label='raw counts');
ax.set_xticks(chromstarts)
ax.set_xticklabels(clr.chromnames)
ax.set_yticks(chromstarts)
ax.set_yticklabels(clr.chromnames)
ax.xaxis.tick_bottom()
ax.set_title('All data')

ax = axs[1]
im = ax.matshow(
 clr.matrix(balance=False).fetch('chr17'),
 norm=norm,
 extent=(0,clr.chromsizes['chr17'], clr.chromsizes['chr17'], 0)
);
plt.colorbar(im, ax=ax ,fraction=0.046, pad=0.04, label='raw counts');
ax.set_title('chr17', y=1.08)
ax.set(ylabel='position, Mb', xlabel='position, Mb')
format_ticks(ax)

ax = axs[2]
start, end = 30_000_000, 60_000_000
region = ('chr17', start, end)
im = ax.matshow(
 clr.matrix(balance=False).fetch(region),
 norm=norm,
 extent=(start, end, end, start)
);
ax.set_title(f'chr17:{start:,}-{end:,}', y=1.08)
plt.colorbar(im, ax=ax ,fraction=0.046, pad=0.04, label='raw counts');
ax.set(xlabel='position, Mb')
format_ticks(ax)
plt.tight_layout()

[image: ../_images/notebooks_viz_16_0.png]

Colormaps

cooltools.lib.plotting registers a set of colormaps that are useful for visualizing C data. In particular, the fall colormap (inspired by colorbrewer [https://colorbrewer2.org/#type=sequential&scheme=YlOrRd&n=9]) offers a high dynamic range, linear, option for visualizing Hi-C matrices. This often displays features more clearly than red colormaps.

[9]:

plot the corrected data in fall heatmap and compare to the white-red colormap
thanks for the alternative collormap naming to https://twitter.com/HiC_memes/status/1286326919122825221/photo/1###
import cooltools.lib.plotting

vmax = 5000
norm = LogNorm(vmin=1, vmax=100_000)
fruitpunch = sns.blend_palette(['white', 'red'], as_cmap=True)

f, axs = plt.subplots(
 figsize=(13, 10),
 nrows=2,
 ncols=2,
 sharex=True, sharey=True)

ax = axs[0, 0]
ax.set_title('Pumpkin Spice')
im = ax.matshow(clr.matrix(balance=False)[:], vmax=vmax, cmap='fall');
plt.colorbar(im, ax=ax ,fraction=0.046, pad=0.04, label='counts (linear)');
plt.xticks(chromstarts,clr.chromnames);

ax = axs[0, 1]
ax.set_title('Fruit Punch')
im3 = ax.matshow(clr.matrix(balance=False)[:], vmax=vmax, cmap=fruitpunch);
plt.colorbar(im3, ax=ax, fraction=0.046, pad=0.04, label='counts (linear)');
plt.xticks(chromstarts,clr.chromnames);

ax = axs[1, 0]
im = ax.matshow(clr.matrix(balance=False)[:], norm=norm, cmap='fall');
plt.colorbar(im, ax=ax ,fraction=0.046, pad=0.04, label='counts (log)');
plt.xticks(chromstarts,clr.chromnames);

ax = axs[1, 1]
im3 = ax.matshow(clr.matrix(balance=False)[:], norm=norm, cmap=fruitpunch);
plt.colorbar(im3, ax=ax, fraction=0.046, pad=0.04, label='counts (log)');
plt.xticks(chromstarts,clr.chromnames);

plt.tight_layout()

[image: ../_images/notebooks_viz_18_0.png]

The utility of fall colormaps becomes more noticeable at higher resolutions and higher degrees of zoom.

[10]:

plot the corrected data in fall heatmap
import cooltools.lib.plotting
clr_10kb = cooler.Cooler(f'{data_dir}/test.mcool::resolutions/10000')

region = 'chr17:30,000,000-35,000,000'
extents = (start, end, end, start)
norm = LogNorm(vmin=1, vmax=1000)

f, axs = plt.subplots(
 figsize=(13, 10),
 nrows=2,
 ncols=2,
 sharex=True,
 sharey=True
)

ax = axs[0, 0]
im = ax.matshow(
 clr_10kb.matrix(balance=False).fetch(region),
 cmap='fall',
 vmax=200,
 extent=extents
);
plt.colorbar(im, ax=ax ,fraction=0.046, pad=0.04, label='counts');

ax = axs[0, 1]
im2 = ax.matshow(
 clr_10kb.matrix(balance=False).fetch(region),
 cmap=fruitpunch,
 vmax=200,
 extent=extents
);
plt.colorbar(im2, ax=ax, fraction=0.046, pad=0.04, label='counts');

ax = axs[1, 0]
im = ax.matshow(
 clr_10kb.matrix(balance=False).fetch(region),
 cmap='fall',
 norm=norm,
 extent=extents
);
plt.colorbar(im, ax=ax, fraction=0.046, pad=0.04, label='counts');

ax = axs[1, 1]
im2 = ax.matshow(
 clr_10kb.matrix(balance=False).fetch(region),
 cmap=fruitpunch,
 norm=norm,
 extent=extents
);
plt.colorbar(im2, ax=ax, fraction=0.046, pad=0.04, label='counts');

for ax in axs.ravel():
 format_ticks(ax, rotate=False)
plt.tight_layout()

[image: ../_images/notebooks_viz_20_0.png]

Balancing

When (balance=True) is passed to cooler.matrix(), this applies correction weights calculated from matrix balancing. Matrix balancing (also called iterative correction and KR normalization) removes multiplicative biases, which constitute the majority of known biases, from C data. By default, the rows & columns of the matrix are normalized to sum to one (note that the colormap scale differs after balancing). Biases, also called weights for normalization, are stored in the weight column of
the bin table given by clr.bins().

[11]:

clr.bins()[:3]

[11]:

 Contacts vs distance

Contacts vs distance

Welcome to the cooltools expected & contacts-vs-distance notebook!

In Hi-C maps, contact frequency decreases very strongly with genomic separation (also referred to as genomic distance). In the Hi-C field, this decay is often interchangeably referred to as the:

	expected because one “expects” a certain average contact frequency at a given genomic separation

	scaling which is borrowed from the polymer physics literature

	P(s) curve contact probability, P, as a function of genomic separation, s.

The rate of decay of contacts with genomic separation reflects the polymeric nature of chromosomes and can tell us about the global folding patterns of the genome.

This decay has been observed to vary through the cell cycle, across cell types, and after degredation of structural maintenance of chromosomes complexes (SMCs) in both interphase and mitosis.

The goals of this notebook are to:

	calculate the P(s) of a given cooler

	plot the P(s) curve

	smooth the P(s) curve with logarithmic binning

	plot the derivative of P(s)

	plot the P(s) between two different genomic regions

	plot the matrix of average contact frequencies between different chromosomes

[1]:

%load_ext autoreload
%autoreload 2

[2]:

import core packages
import warnings
warnings.filterwarnings("ignore")
from itertools import combinations
import os

import semi-core packages
import matplotlib.pyplot as plt
from matplotlib import colors
%matplotlib inline
plt.style.use('seaborn-v0_8-poster')
import numpy as np
import pandas as pd
from multiprocessing import Pool

import open2c libraries
import bioframe

import cooler
import cooltools

from packaging import version
if version.parse(cooltools.__version__) < version.parse('0.5.2'):
 raise AssertionError("tutorial relies on cooltools version 0.5.2 or higher,"+
 "please check your cooltools version and update to the latest")

count cpus
num_cpus = os.getenv('SLURM_CPUS_PER_TASK')
if not num_cpus:
 num_cpus = os.cpu_count()
num_cpus = int(num_cpus)

[3]:

download test data
this file is 145 Mb, and may take a few seconds to download
cool_file = cooltools.download_data("HFF_MicroC", cache=True, data_dir='./data/')
print(cool_file)

./data/test.mcool

[4]:

Load a Hi-C map at a 1kb resolution from a cooler file.
resolution = 1000 # note this might be slightly slow on a laptop
 # and could be lowered to 10kb for increased speed
clr = cooler.Cooler('data/test.mcool::/resolutions/'+str(resolution))

In addition to data stored in a cooler, the analyses below make use of where chromosomal arms start and stop to calculate contact frequency versus distance curves within arms. For commonly-used genomes, bioframe can be used to fetch these annotations directly from UCSC. For less commonly-used genomes, a table of arms, or chromosomes can be loaded in directly with pandas, e.g.

chromsizes = pd.read_csv('chrom.sizes', sep='\t')

Regions for calculating expected should be provided as a viewFrame [https://bioframe.readthedocs.io/en/latest/guide-intervalops.html#genomic-views], i.e. a dataframe with four columns, chrom, start, stop, name, where entries in the name column are unique and the intervals are non-overlapping. If the chromsizes table does not have a name column, it can be created with bioframe.core.construction.add_ucsc_name_column(bioframe.make_viewframe(chromsizes)).

[5]:

Use bioframe to fetch the genomic features from the UCSC.
hg38_chromsizes = bioframe.fetch_chromsizes('hg38')
hg38_cens = bioframe.fetch_centromeres('hg38')
create a view with chromosome arms using chromosome sizes and definition of centromeres
hg38_arms = bioframe.make_chromarms(hg38_chromsizes, hg38_cens)

select only those chromosomes available in cooler
hg38_arms = hg38_arms[hg38_arms.chrom.isin(clr.chromnames)].reset_index(drop=True)
hg38_arms

[5]:

 Compartments & Saddleplots

Compartments & Saddleplots

Welcome to the compartments and saddleplot notebook!

This notebook illustrates cooltools functions used for investigating chromosomal compartments, visible as plaid patterns in mammalian interphase contact frequency maps.

These plaid patterns reflect tendencies of chromosome regions to make more frequent contacts with regions of the same type: active regions have increased contact frequency with other active regions, and intactive regions tend to contact other inactive regions more frequently. The strength of compartmentalization has been show to vary through the cell cycle, across cell types, and after degredation of components of the cohesin complex.

In this notebook we:

	obtain compartment profiles using eigendecomposition

	calculate and visualize strength of compartmentalization using saddleplots

[1]:

import standard python libraries
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import pandas as pd
import os, subprocess

[2]:

Import python package for working with cooler files and tools for analysis
import cooler
import cooltools.lib.plotting

[3]:

from packaging import version
if version.parse(cooltools.__version__) < version.parse('0.5.4'):
 raise AssertionError("tutorials rely on cooltools version 0.5.4 or higher,"+
 "please check your cooltools version and update to the latest")

[4]:

download test data
this file is 145 Mb, and may take a few seconds to download
import cooltools
cool_file = cooltools.download_data("HFF_MicroC", cache=True, data_dir='./data/')
print(cool_file)

./data/test.mcool

Calculating per-chromosome compartmentalization

We first load the Hi-C data at 100 kbp resolution.

Note that the current implementation of eigendecomposition in cooltools assumes that individual regions can be held in memory– for hg38 at 100kb this is either a 2422x2422 matrix for chr2, or a 3255x3255 matrix for the full cooler here.

[5]:

clr = cooler.Cooler('./data/test.mcool::resolutions/100000')

Since the orientation of eigenvectors is determined up to a sign, the convention for Hi-C data anaylsis is to orient eigenvectors to be positively correlated with a binned profile of GC content as a ‘phasing track’.

In humans and mice, GC content is useful for phasing because it typically has a strong correlation at the 100kb-1Mb bin level with the eigenvector. In other organisms, other phasing tracks have been used to orient eigenvectors from Hi-C data.

For other data analyses, different conventions are used to consistently orient eigenvectors. For example, spectral clustering as implemented in scikit-learn [https://github.com/scikit-learn/scikit-learn/blob/03245ee3afe5ee9e2ff626e2290f02748d95e497/sklearn/utils/extmath.py#L1041] orients vectors such that the absolute maximum element of each vector is positive.

[]:

fasta sequence is required for calculating binned profile of GC conent
if not os.path.isfile('./hg38.fa'):
 ## note downloading a ~1Gb file can take a minute
 subprocess.call('wget --progress=bar:force:noscroll https://hgdownload.cse.ucsc.edu/goldenpath/hg38/bigZips/hg38.fa.gz', shell=True)
 subprocess.call('gunzip hg38.fa.gz', shell=True)

[7]:

import bioframe
bins = clr.bins()[:]
hg38_genome = bioframe.load_fasta('./hg38.fa');
note the next command may require installing pysam
gc_cov = bioframe.frac_gc(bins[['chrom', 'start', 'end']], hg38_genome)
gc_cov.to_csv('hg38_gc_cov_100kb.tsv',index=False,sep='\t')
display(gc_cov)

 Insulation & boundaries

Insulation & boundaries

Welcome to the contact insulation notebook!

Insulation is a simple concept, yet a powerful way to look at C data. Insulation is one aspect of locus-specific contact frequency at small genomic distances, and reflects the segmentation of the genome into domains.

Insulation can be computed with multiple methods. One of the most common methods involves using a diamond-window score to generate an insulation profile. To compute this profile, slide a diamond-shaped window along the genome, with one of the corners on the main diagonal of the matrix, and sum up the contacts within the window for each position.

Insulation profiles reveal that certain locations have lower scores, reflecting lowered contact frequencies between upstream and downstream loci. These positions are often referred to as boundaries, and are also obtained with multiple methods. Here we illustrate one thresholding method for determining boundaries from an insulation profile.

In this notebook we:

	Calculate the insulation score genome-wide and display it alongside an interaction matrix

	Call insulating boundaries

	Filter insulating boundaries based on their strength

	Calculate enrichment of CTCF/genes at boundaries

	Repeat boundary filtering based on enrichmnent of CTCF, a known insulator protein in mammalian genomes

[1]:

import standard python libraries
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

[2]:

Import python package for working with cooler files and tools for analysis
import cooler
import cooltools.lib.plotting
from cooltools import insulation

from packaging import version
if version.parse(cooltools.__version__) < version.parse('0.5.4'):
 raise AssertionError("tutorials rely on cooltools version 0.5.4 or higher,"+
 "please check your cooltools version and update to the latest")

[3]:

download test data
this file is 145 Mb, and may take a few seconds to download
import cooltools
data_dir = './data/'
cool_file = cooltools.download_data("HFF_MicroC", cache=True, data_dir=data_dir)
print(cool_file)

./data/test.mcool

Calculating genome-wide contact insulation

Here we load the Hi-C data at 10 kbp resolution and calculate insulation score with 4 different window sizes

[4]:

resolution = 10000
clr = cooler.Cooler(f'{data_dir}test.mcool::resolutions/{resolution}')
windows = [3*resolution, 5*resolution, 10*resolution, 25*resolution]
insulation_table = insulation(clr, windows, verbose=True)

INFO:root:fallback to serial implementation.
INFO:root:Processing region chr2
INFO:root:Processing region chr17

This function returns a dataframe where rows correspond to genomic bins of the cooler.

The columns of this insulation dataframe report the insulation score, the number of valid (non-nan) pixels, whether the given bin is valid, the boundary prominence (strength) and whether locus is called as a boundary after thresholding, for each of the window sizes provided to the function.

Below we print the information returned for any window size, as well as the specific information for the largest window used:

[5]:

first_window_summary =insulation_table.columns[[str(windows[-1]) in i for i in insulation_table.columns]]

insulation_table[['chrom','start','end','region','is_bad_bin']+list(first_window_summary)].iloc[1000:1005]

[5]:

 Dots & focal enrichment

Dots & focal enrichment

Welcome to the dot calling notebook!

Punctate pairwise peaks of enriched contact frequency are a prevalent feature of mammalian interphase contact maps. These features are also referred to as ‘dots’ or ‘loops’ in the literature, and can appear either in isolation or as parts of grids and at the corners of domains.

HiCCUPS, proposed in Rao et al. 2014 [https://doi.org/10.1016/j.cell.2014.11.021], is a common approach for calling dots in contact maps. HICCUPS uses a multi-step procedure to score and return a filtered list of extracted dots. Scoring is done by convolving a set of kernels with the contact map. However, since HICCUPS is written in Java it is challenging to modify the parameters used at specific steps of the calling procedure, which can be important for calling dots at new resolutions
or in new organismal or cellular contexts.

Cooltools implements a similar approach for calling dots in Python. This enables users to easily vary the parameters and processing steps used for different Hi-C or Micro-C datasets.

[1]:

import pandas as pd
import numpy as np
from itertools import chain

Hi-C utilities imports:
import cooler
import bioframe
import cooltools
from cooltools.lib.numutils import fill_diag
from packaging import version
if version.parse(cooltools.__version__) < version.parse('0.5.2'):
 raise AssertionError("tutorials rely on cooltools version 0.5.2 or higher,"+
 "please check your cooltools version and update to the latest")

Visualization imports:
import matplotlib.pyplot as plt
from matplotlib.colors import LogNorm
import matplotlib.patches as patches
from matplotlib.ticker import EngFormatter

helper functions for plotting
bp_formatter = EngFormatter('b')
def format_ticks(ax, x=True, y=True, rotate=True):
 """format ticks with genomic coordinates as human readable"""
 if y:
 ax.yaxis.set_major_formatter(bp_formatter)
 if x:
 ax.xaxis.set_major_formatter(bp_formatter)
 ax.xaxis.tick_bottom()
 if rotate:
 ax.tick_params(axis='x',rotation=45)

Load data and define a genomic view

To call dots, we need an input cooler file with Hi-C data, and regions for calculation of expected (e.g. chromosomes or chromosome arms).

[2]:

Download the test data from osf and define cooler:
data_dir = './data/'
cool_file = cooltools.download_data("HFF_MicroC", cache=True, data_dir=data_dir)
10 kb is a resolution at which one can clearly see "dots":
binsize = 10_000
Open cool file with Micro-C data:
clr = cooler.Cooler(f'{data_dir}/test.mcool::/resolutions/{binsize}')

[3]:

define genomic view that will be used to call dots and pre-compute expected

Use bioframe to fetch the genomic features from the UCSC.
hg38_chromsizes = bioframe.fetch_chromsizes('hg38')
hg38_cens = bioframe.fetch_centromeres('hg38')
hg38_arms = bioframe.make_chromarms(hg38_chromsizes, hg38_cens)

Select only chromosomes that are present in the cooler.
hg38_arms = hg38_arms.set_index("chrom").loc[clr.chromnames].reset_index()

intra-arm expected
expected = cooltools.expected_cis(
 clr,
 view_df=hg38_arms,
 nproc=4,
)

Dot-calling with default parameters

We first call dots with default parameters (i.e. similar to HiCCUPs). Later we illustrate the various parameters than can be easily modified in cooltools.

Here is a brief description of the steps involved in cooltools dots():

	A set of convolution kernels are recommended based on the resolution of clr, if user-defined convolution kernels are not provided (i.e. kernels=None).

	The requested portion of the heatmap (defined by view_df and max_loci_separation) is split into smaller tiles of size tile_size. This ensures the entire heatmap is not loaded into memory at once, and computationally intensive steps can be done in parallel using nproc workers. tile_size and nproc do not affect the outcome of the procedure.

	Tiles of the heatmap are convolved with the provided kernels to calculate localy adjusted expected for each pixel. This is in turn used to calculate p-values, assuming a Poisson distribution of pixel counts.

	Pixels are assigned to geometrically-spaced “lambda-bins” of locally-adjusted expected for statistical testing. Within each lambda-bin, signficantly enriched pixels are “caled” using BH-FDR [https://en.wikipedia.org/wiki/False_discovery_rate] multiple hypothesis testing procedure, and thresholds of significance are calculated for each lambda-bin and each kernel-type (controlled by lambda_bin_fdr).

	Significantly-enriched pixels are extracted, based on the thresholds in each lambda bin. Note the cooltools implementation of this step involves a second pass with the same convolution kernels to re-score pixels, as this is less costly than storing all such scores in memory.

	Additional clustering and empirical filtering is optionally performed (depending on clustering_radius and cluster_filtering).

See the `dotfinder docstring <https://github.com/open2c/cooltools/blob/master/cooltools/api/dotfinder.py>`__ for additional practical details of the implementation.

[4]:

dots_df = cooltools.dots(
 clr,
 expected=expected,
 view_df=hg38_arms,
 # how far from the main diagonal to call dots:
 max_loci_separation=10_000_000,
 nproc=4,
)

INFO:root:Using recommended donut-based kernels with w=5, p=2 for binsize=10000
INFO:root: matrix 9314X9314 to be split into 361 tiles of 500X500.
INFO:root: tiles are padded (width=5) to enable convolution near the edges
INFO:root: matrix 14907X14907 to be split into 900 tiles of 500X500.
INFO:root: tiles are padded (width=5) to enable convolution near the edges
INFO:root: matrix 2472X2472 to be split into 25 tiles of 500X500.
INFO:root: tiles are padded (width=5) to enable convolution near the edges
INFO:root: matrix 5855X5855 to be split into 144 tiles of 500X500.
INFO:root: tiles are padded (width=5) to enable convolution near the edges
INFO:root:convolving 186 tiles to build histograms for lambda-bins
INFO:root:creating a Pool of 4 workers to tackle 186 tiles
INFO:root:Done building histograms in 29.498 sec ...
INFO:root:Determined thresholds for every lambda-bin ...
INFO:root:convolving 186 tiles to extract enriched pixels
INFO:root:creating a Pool of 4 workers to tackle 186 tiles
INFO:root:Done extracting enriched pixels in 22.276 sec ...
INFO:root:Begin post-processing of 15303 filtered pixels
INFO:root:preparing to extract needed q-values ...
INFO:root:clustering enriched pixels in region: chr17_p
INFO:root:detected 341 clusters of 2.96+/-2.60 size
INFO:root:clustering enriched pixels in region: chr17_q
INFO:root:detected 939 clusters of 3.23+/-2.99 size
INFO:root:clustering enriched pixels in region: chr2_p
INFO:root:detected 1400 clusters of 3.12+/-2.93 size
INFO:root:clustering enriched pixels in region: chr2_q
INFO:root:detected 2203 clusters of 3.13+/-2.87 size
INFO:root:Clustering is complete
INFO:root:filtered 3145 out of 4883 centroids to reduce the number of false-positives

Visualizing dot-calling with the default parameters

To visualize the results of this dot calling, we overlay small rectangles at the positions of the called dots over the HiC map.

[5]:

create a functions that would return a series of rectangles around called dots
in a specific region, and exposing importnat plotting parameters
def rectangles_around_dots(dots_df, region, loc="upper", lw=1, ec="cyan", fc="none"):
 """
 yield a series of rectangles around called dots in a given region
 """
 # select dots from the region:
 df_reg = bioframe.select(
 bioframe.select(dots_df, region, cols=("chrom1","start1","end1")),
 region,
 cols=("chrom2","start2","end2"),
)
 rectangle_kwargs = dict(lw=lw, ec=ec, fc=fc)
 # draw rectangular "boxes" around pixels called as dots in the "region":
 for s1, s2, e1, e2 in df_reg[["start1", "start2", "end1", "end2"]].itertuples(index=False):
 width1 = e1 - s1
 width2 = e2 - s2
 if loc == "upper":
 yield patches.Rectangle((s2, s1), width2, width1, **rectangle_kwargs)
 elif loc == "lower":
 yield patches.Rectangle((s1, s2), width1, width2, **rectangle_kwargs)
 else:
 raise ValueError("loc has to be uppper or lower")

[6]:

define a region to look into as an example
start = 34_150_000
end = start + 1_200_000
region = ('chr17', start, end)

heatmap kwargs
matshow_kwargs = dict(
 cmap='YlOrBr',
 norm=LogNorm(vmax=0.05),
 extent=(start, end, end, start)
)

colorbar kwargs
colorbar_kwargs = dict(fraction=0.046, label='corrected frequencies')

compute heatmap for the region
region_matrix = clr.matrix(balance=True).fetch(region)
for diag in [-1,0,1]:
 region_matrix = fill_diag(region_matrix, np.nan, i=diag)

see viz.ipynb for details of heatmap visualization
f, ax = plt.subplots(figsize=(7,7))
im = ax.matshow(region_matrix, **matshow_kwargs)
format_ticks(ax, rotate=False)
plt.colorbar(im, ax=ax, **colorbar_kwargs)

draw rectangular "boxes" around pixels called as dots in the "region":
for box in rectangles_around_dots(dots_df, region, lw=1.5):
 ax.add_patch(box)

[image: ../_images/notebooks_dots_9_0.png]

Skipping clustering and cluster enrichment filtering

Dot-calling returns pixels that are enriched relative to some local background. Such pixels often come in groups (“clusters”). By default dots() picks a single representative for each cluster (i.e. centroid). However, cooltools users can easily turn clustering off for debugging or alternative clustering approaches:

[7]:

dots_df_all = cooltools.dots(
 clr,
 expected=expected,
 view_df=hg38_arms,
 max_loci_separation=10_000_000,
 clustering_radius=None, # None - implies no clustering
 cluster_filtering=False, # ignored when clustering is off
 nproc=4,
)

INFO:root:Using recommended donut-based kernels with w=5, p=2 for binsize=10000
INFO:root: matrix 9314X9314 to be split into 361 tiles of 500X500.
INFO:root: tiles are padded (width=5) to enable convolution near the edges
INFO:root: matrix 14907X14907 to be split into 900 tiles of 500X500.
INFO:root: tiles are padded (width=5) to enable convolution near the edges
INFO:root: matrix 2472X2472 to be split into 25 tiles of 500X500.
INFO:root: tiles are padded (width=5) to enable convolution near the edges
INFO:root: matrix 5855X5855 to be split into 144 tiles of 500X500.
INFO:root: tiles are padded (width=5) to enable convolution near the edges
INFO:root:convolving 186 tiles to build histograms for lambda-bins
INFO:root:creating a Pool of 4 workers to tackle 186 tiles
INFO:root:Done building histograms in 25.523 sec ...
INFO:root:Determined thresholds for every lambda-bin ...
INFO:root:convolving 186 tiles to extract enriched pixels
INFO:root:creating a Pool of 4 workers to tackle 186 tiles
INFO:root:Done extracting enriched pixels in 23.327 sec ...
INFO:root:Begin post-processing of 15303 filtered pixels
INFO:root:preparing to extract needed q-values ...

The visualization below compares clustered dots (cyan) with all enriched pixels before clustering (blue)

[8]:

f, ax = plt.subplots(figsize=(7,7))
draw heatmap
im = ax.matshow(region_matrix, **matshow_kwargs)
format_ticks(ax, rotate=False)
plt.colorbar(im, ax=ax, **colorbar_kwargs)

draw rectangular "boxes" around pixels called as dots in the "region":
for rect in chain(
 rectangles_around_dots(dots_df, region, lw=1.5), # clustered & filtered
 rectangles_around_dots(dots_df_all, region, loc="lower", ec="blue"), # unclustered
):
 ax.add_patch(rect)

[image: ../_images/notebooks_dots_13_0.png]

Convolution kernels and local expected

A useful local background to calculate the enrichment of pixels was defined in Rao et al. 2014 [https://doi.org/10.1016/j.cell.2014.11.021] as a “donut”-shaped surrounding of a given pixel between ~20 to ~50 kb away from that pixel.

Such a local surrounding is best thought of in the terms of convolutional kernels e.g. as in image processing [https://en.wikipedia.org/wiki/Kernel_(image_processing)]. In this framework, calcluating the local background for all pixels is simply obtained as the convolution of a contact map with the “donut”-shaped kernel.

Additional kernels can be used to downweight unwanted enrichment types. In addition to the “donut” kernel, the default kernels recommended in cooltools dots() are: - “vertical” to avoid calling pixels that are part of vertical stripes as dots - “horizontal” to avoid calling pixels that are part of horizontal stripes as dots - “lowleft” to avoid calling pixels at the corners of domains as dots

These four kernels are illustrated below, where pixels that are included in the calculations are highlighted in yellow, the pixel of interest is highlighted in red, and pixels that are not included in the local background are in purple. A checkerboard pattern is overlayed on the figure to emphasize individual pixels.

[9]:

function to draw kernels:
def draw_kernel(kernel, axis=None, cmap='viridis'):
 if axis is None:
 f, axis = plt.subplots()
 # kernel:
 imk = axis.imshow(
 kernel[::-1,::-1], # flip it, as in convolution
 alpha=0.85,
 cmap=cmap,
 interpolation='nearest')
 # draw a square around the target pixel:
 x0 = kernel.shape[0] // 2 - 0.5
 y0 = kernel.shape[1] // 2 - 0.5
 rect = patches.Rectangle((x0, y0), 1, 1, lw=1, ec='r', fc='r')
 axis.add_patch(rect)

 # clean axis:
 axis.set_xticks([])
 axis.set_yticks([])
 axis.set_xticklabels('',visible=False)
 axis.set_yticklabels('',visible=False)
 axis.set_title("{} kernel".format(ktype),fontsize=16)
 # add a checkerboard to highlight pixels:
 checkerboard = np.add.outer(range(kernel.shape[0]),
 range(kernel.shape[1])) % 2
 # show it:
 axis.imshow(checkerboard,
 cmap='gray',
 interpolation='nearest',
 alpha=0.3)

 return imk

[10]:

kernels = cooltools.api.dotfinder.recommend_kernels(binsize)

fig, axs = plt.subplots(ncols=4, figsize=(12,2.5))
for ax, (ktype, kernel) in zip(axs, kernels.items()):
 imk = draw_kernel(kernel, ax)

INFO:root:Using recommended donut-based kernels with w=5, p=2 for binsize=10000

[image: ../_images/notebooks_dots_16_1.png]

Calling dots with a “rounded donut” kernel

Cooltools enables experimentation and modification of kernels used for determining local enrichment scores. Here we show the result for replacing the default “donut” kernel with a “rounded donut”.

[11]:

create a grid of coordinates from -5 to 5, to define round kernels
see https://numpy.org/doc/stable/reference/generated/numpy.meshgrid.html for details
half = 5 # half width of the kernel
x, y = np.meshgrid(
 np.linspace(-half, half, 2*half + 1),
 np.linspace(-half, half, 2*half + 1),
)
now define a donut-like mask as pixels between 2 radii: sqrt(7) and sqrt(30):
mask = (x**2+y**2 > 7) & (x**2+y**2 <= 30)
mask[:,half] = 0
mask[half,:] = 0

lowleft mask - zero out neccessary parts
mask_ll = mask.copy()
mask_ll[:,:half] = 0
mask_ll[half:,:] = 0

new kernels with more round donut and lowleft masks:
kernels_round = {'donut': mask,
 'vertical': kernels["vertical"].copy(),
 'horizontal': kernels["horizontal"].copy(),
 'lowleft': mask_ll}

plot rounded kernels
fig, axs = plt.subplots(ncols=4, figsize=(12,2.5))
for ax, (ktype, kernel) in zip(axs, kernels_round.items()):
 imk = draw_kernel(kernel, ax)

[image: ../_images/notebooks_dots_18_0.png]

[12]:

call dots using redefined kernels (without clustering)

dots_round_df_all = cooltools.dots(
 clr,
 expected=expected,
 view_df=hg38_arms,
 kernels=kernels_round, # provide custom kernels
 max_loci_separation=10_000_000,
 clustering_radius=None,
 nproc=4,
)

/Users/geofffudenberg/anaconda3/envs/open2c/lib/python3.9/site-packages/cooltools/api/dotfinder.py:1571: UserWarning: Compatibility checks for 'kernels' are not fully implemented yet, use at your own risk
 warnings.warn(
INFO:root: matrix 9314X9314 to be split into 361 tiles of 500X500.
INFO:root: tiles are padded (width=5) to enable convolution near the edges
INFO:root: matrix 14907X14907 to be split into 900 tiles of 500X500.
INFO:root: tiles are padded (width=5) to enable convolution near the edges
INFO:root: matrix 2472X2472 to be split into 25 tiles of 500X500.
INFO:root: tiles are padded (width=5) to enable convolution near the edges
INFO:root: matrix 5855X5855 to be split into 144 tiles of 500X500.
INFO:root: tiles are padded (width=5) to enable convolution near the edges
INFO:root:convolving 186 tiles to build histograms for lambda-bins
INFO:root:creating a Pool of 4 workers to tackle 186 tiles
INFO:root:Done building histograms in 33.029 sec ...
INFO:root:Determined thresholds for every lambda-bin ...
INFO:root:convolving 186 tiles to extract enriched pixels
INFO:root:creating a Pool of 4 workers to tackle 186 tiles
INFO:root:Done extracting enriched pixels in 23.135 sec ...
INFO:root:Begin post-processing of 16716 filtered pixels
INFO:root:preparing to extract needed q-values ...

The visualization below compares dots called using “rounded” kernels (cyan) with the dots called using recommended kernels (blue). As one can tell the results are similar, yet the “rounded” kernels allow for calling dots closer to the diagonal because of the shape of the kernel.

[13]:

f, ax = plt.subplots(figsize=(7,7))
draw heatmap
im = ax.matshow(region_matrix, **matshow_kwargs)
format_ticks(ax, rotate=False)
plt.colorbar(im, ax=ax, **colorbar_kwargs)

draw rectangular "boxes" around pixels called as dots in the "region":
for rect in chain(
 rectangles_around_dots(dots_round_df_all, region),
 rectangles_around_dots(dots_df_all, region, loc="lower", ec="blue"),
):
 ax.add_patch(rect)

[image: ../_images/notebooks_dots_21_0.png]

[14]:

TODO CTCF-based analysis to look

This page was generated with nbsphinx [https://nbsphinx.readthedocs.io/] from /home/docs/checkouts/readthedocs.org/user_builds/cooltools/checkouts/latest/docs/notebooks/dots.ipynb [https://github.com/open2c/cooltools/blob/master//home/docs/checkouts/readthedocs.org/user_builds/cooltools/checkouts/latest/docs/notebooks/dots.ipynb]

 Pileups and average features

Pileups and average features

Welcome to the cooltools pileups notebook!

Averaging Hi-C/Micro-C maps allows the quantification of general patterns observed in the maps. Averaging comes in various forms: contact-vs-distance plots, saddle plots, and pileup plots. Pileup plots are the averaged local Hi-C map over the 2D windows (i.e. snippets). These are also referred to as “average Hi-C maps”. Pileups can be useful for determining the relationship between features (e.g. CTCF and TAD boundaries). Pileups can also be beneficial for reliably observing features in
low-coverage Hi-C or single-cell HiC maps.

For pileups, we retrieve local windows that are centered at the anchors. We call this procedure snipping. Anchors can be ChIP-Seq binding sites, anchors of dots, or any other genomic features. Pileups come in two varieties:

	On-diagonal pileup. Each window is centered at the pixel located at the anchor position, at the main diagonal. Both coordinates of the window center are equivalent to the bin of the anchor.

	Off-diagonal pileup. Each window is centered at the pixel with one anchor as a left coordinate and another anchor as a right coordinate.

Typically, the sizes of windows are equivalent. After the selection of windows, we average them elementwise.

Content:

	Download data

	Load data

	Load genomic regions

	Load features for anchors

	On-diagonal pipeup of CTCF

	On-diagonal pileup of ICed Hi-C interactions

	On-diagonal pileup of observed over expected interactions

	Inspect the snips

	Off-diagonal pileup of CTCF

[1]:

If you are a developer, you may want to reload the packages on a fly.
Jupyter has a magic for this particular purpose:
%load_ext autoreload
%autoreload 2

[2]:

import standard python libraries
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns

[3]:

import libraries for biological data analysis
import cooler
import bioframe

import cooltools

from packaging import version
if version.parse(cooltools.__version__) < version.parse('0.5.2'):
 raise AssertionError("tutorials rely on cooltools version 0.5.2 or higher,"+
 "please check your cooltools version and update to the latest")

Download data

For this example notebook, we collected the data from immortalized human foreskin fibroblast cell line HFFc6 [https://data.4dnucleome.org/ontology-terms/EFO:0009318/]:

	Micro-C data from Krietenstein et al. 2020 [https://pubmed.ncbi.nlm.nih.gov/32213324/]

	ChIP-Seq for CTCF from ENCODE ENCSR000DWQ [https://www.encodeproject.org/experiments/ENCSR000DWQ/]

You can automatically download test datasets with cooltools. More information on the files and how they were obtained is available from the datasets description.

[4]:

Print available datasets for download
cooltools.print_available_datasets()

1) HFF_MicroC : Micro-C data from HFF human cells for two chromosomes (hg38) in a multi-resolution mcool format.
 Downloaded from https://osf.io/3h9js/download
 Stored as test.mcool
 Original md5sum: e4a0fc25c8dc3d38e9065fd74c565dd1

2) HFF_CTCF_fc : ChIP-Seq fold change over input with CTCF antibodies in HFF cells (hg38). Downloaded from ENCODE ENCSR000DWQ, ENCFF761RHS.bigWig file
 Downloaded from https://osf.io/w92u3/download
 Stored as test_CTCF.bigWig
 Original md5sum: 62429de974b5b4a379578cc85adc65a3

3) HFF_CTCF_binding : Binding sites called from CTCF ChIP-Seq peaks for HFF cells (hg38). Peaks are from ENCODE ENCSR000DWQ, ENCFF498QCT.bed file. The motifs are called with gimmemotifs (options --nreport 1 --cutoff 0), with JASPAR pwm MA0139.
 Downloaded from https://osf.io/c9pwe/download
 Stored as test_CTCF.bed.gz
 Original md5sum: 61ecfdfa821571a8e0ea362e8fd48f63

[5]:

Downloading test data for pileups
cache = True will doanload the data only if it was not previously downloaded
data_dir = './data/'
cool_file = cooltools.download_data("HFF_MicroC", cache=True, data_dir=data_dir)
ctcf_peaks_file = cooltools.download_data("HFF_CTCF_binding", cache=True, data_dir=data_dir)
ctcf_fc_file = cooltools.download_data("HFF_CTCF_fc", cache=True, data_dir=data_dir)

Load data

Load genomic regions

The pileup function needs genomic regions. Why?

	First, pileup uses regions for parallelization of snipping. Different genomic regions are loaded simultaneously by different processes, and the snipping can be done in parallel.

	Second, the observed over expected pileup requires calculating expected interactions before snipping (P(s), in other words). Typically, P(s) is calculated separately for each chromosome arm as inter-arms interactions might be affected by strong insulation of centromeres or Rabl configuration.

For species that do not have information on chromosome arms, or have telocentric chromosomes (e.g., mouse), you may want to use full chromosomes instead.

[6]:

Open cool file with Micro-C data:
clr = cooler.Cooler(data_dir+'/test.mcool::/resolutions/10000')
Set up selected data resolution:
resolution = clr.binsize

[7]:

Use bioframe to fetch the genomic features from the UCSC.
hg38_chromsizes = bioframe.fetch_chromsizes('hg38')
hg38_cens = bioframe.fetch_centromeres('hg38')
hg38_arms = bioframe.make_chromarms(hg38_chromsizes, hg38_cens)

Select only chromosomes that are present in the cooler.
This step is typically not required! we call it only because the test data are reduced.
hg38_arms = hg38_arms.set_index("chrom").loc[clr.chromnames].reset_index()

Load features for anchors

Construction of the pileup requires genomic features that will be used for centering of the snippets. In this example, we will use positions of motifs in CTCF peaks as features.

[8]:

Read CTCF peaks data and select only chromosomes present in cooler:
ctcf = bioframe.read_table(ctcf_peaks_file, schema='bed').query(f'chrom in {clr.chromnames}')
ctcf['mid'] = (ctcf.end+ctcf.start)//2
ctcf.head()

[8]:

 Command line interface

Command line interface

Welcome to the cooltools command line interface (CLI) notebook!

Cooltools features a paired python API & CLI that enables user-facing functions to be run from the command line.

[1]:

import os, subprocess
import pandas as pd
import bioframe
import cooltools
import cooler
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import LogNorm
plt.rcParams['font.size']=12

from packaging import version
if version.parse(cooltools.__version__) < version.parse('0.5.2'):
 raise AssertionError("tutorials rely on cooltools version 0.5.2 or higher,"+
 "please check your cooltools version and update to the latest")

We can use this function to display a file within the notebook
from IPython.display import Image

download test data
this file is 145 Mb, and may take a few seconds to download
cool_file = cooltools.download_data("HFF_MicroC", cache=True, data_dir='./data/')
print(cool_file)

To use this variable in a bash call from jupyter just use $cool_file

./data/test.mcool

[2]:

%%bash
mkdir -p data
mkdir -p outputs

[3]:

Note for the correct bash environment to be recognized from jupyter with the ! magic,
jupyter notebook must be initialized from a conda environment with cooler and cooltools installed.

To see a list of CLI commands for cooltools, see the help:

[4]:

!cooltools -h

Usage: cooltools [OPTIONS] COMMAND [ARGS]...

 Type -h or --help after any subcommand for more information.

Options:
 -v, --verbose Verbose logging
 -d, --debug Post mortem debugging
 -V, --version Show the version and exit.
 -h, --help Show this message and exit.

Commands:
 coverage Calculate the sums of cis and genome-wide contacts (aka...
 dots Call dots on a Hi-C heatmap that are not larger than...
 eigs-cis Perform eigen value decomposition on a cooler matrix to...
 eigs-trans Perform eigen value decomposition on a cooler matrix to...
 expected-cis Calculate expected Hi-C signal for cis regions of...
 expected-trans Calculate expected Hi-C signal for trans regions of...
 genome Utilities for binned genome assemblies.
 insulation Calculate the diamond insulation scores and call...
 pileup Perform retrieval of the snippets from .cool file.
 random-sample Pick a random sample of contacts from a Hi-C map.
 saddle Calculate saddle statistics and generate saddle plots...
 virtual4c Generate virtual 4C profile from a contact map by...

Visualization

[5]:

!cooler show $cool_file::resolutions/1000000 'chr2' -o 'outputs/chr2.png'

Traceback (most recent call last):
 File "/Users/geofffudenberg/anaconda3/envs/open2c/bin/cooler", line 8, in <module>
 sys.exit(cli())
 File "/Users/geofffudenberg/anaconda3/envs/open2c/lib/python3.9/site-packages/click/core.py", line 1130, in __call__
 return self.main(*args, **kwargs)
 File "/Users/geofffudenberg/anaconda3/envs/open2c/lib/python3.9/site-packages/click/core.py", line 1055, in main
 rv = self.invoke(ctx)
 File "/Users/geofffudenberg/anaconda3/envs/open2c/lib/python3.9/site-packages/click/core.py", line 1657, in invoke
 return _process_result(sub_ctx.command.invoke(sub_ctx))
 File "/Users/geofffudenberg/anaconda3/envs/open2c/lib/python3.9/site-packages/click/core.py", line 1404, in invoke
 return ctx.invoke(self.callback, **ctx.params)
 File "/Users/geofffudenberg/anaconda3/envs/open2c/lib/python3.9/site-packages/click/core.py", line 760, in invoke
 return __callback(*args, **kwargs)
 File "/Users/geofffudenberg/anaconda3/envs/open2c/lib/python3.9/site-packages/cooler/cli/show.py", line 230, in show
 plt.gcf().canvas.set_window_title("Contact matrix".format())
AttributeError: 'FigureCanvasAgg' object has no attribute 'set_window_title'

[6]:

Image('outputs/chr2.png', width=400, height=400)

[6]:

[image: ../_images/notebooks_command_line_interface_8_0.png]

Expected

Tables of expected counts, either in cis or trans, are key inputs for many downstream analyses in cooltools. For more details, see the contacts_vs_dist [https://github.com/open2c/open2c_examples/blob/master/contacts_vs_distance.ipynb] notebook.

Typically, we specify a view to define regions under analysis. Here we quickly create a view that specifies chromosome arms using tables of chromosome sizes and centromere positions.

[7]:

create a view of hg38 chromosome arms using chromosome sizes and definition of centromeres
hg38_chromsizes = bioframe.fetch_chromsizes('hg38')
hg38_cens = bioframe.fetch_centromeres('hg38')
view_hg38 = bioframe.make_chromarms(hg38_chromsizes, hg38_cens)

select only those chromosomes available in cooler
clr = cooler.Cooler(f'{cool_file}::/resolutions/1000000')
view_hg38 = view_hg38[view_hg38.chrom.isin(clr.chromnames)].reset_index(drop=True)
view_hg38.to_csv("data/view_hg38.tsv", index=False, header=False, sep='\t')

[8]:

! cooltools expected-cis $cool_file::resolutions/100000 --nproc 6 -o 'outputs/test.expected.cis.100000.tsv' --view "data/view_hg38.tsv"

Note expected for the first two distances are not defined with default settings, due to masking of near-diagonals in the cooler.

[9]:

display(
 pd.read_table("outputs/test.expected.cis.100000.tsv")[0:5]
)

 CLI Reference

CLI Reference

cooltools

Type -h or –help after any subcommand for more information.

cooltools [OPTIONS] COMMAND [ARGS]...

Options

	
-v, --verbose

	Verbose logging

	
-d, --debug

	Post mortem debugging

	
-V, --version

	Show the version and exit.

coverage

Calculate the sums of cis and genome-wide contacts (aka coverage aka marginals) for
a sparse Hi-C contact map in Cooler HDF5 format.
Note that the sum(tot_cov) from this function is two times the number of reads
contributing to the cooler, as each side contributes to the coverage.

COOL_PATH : The paths to a .cool file with a balanced Hi-C map.

cooltools coverage [OPTIONS] COOL_PATH

Options

	
-o, --output <output>

	Specify output file name to store the coverage in a tsv format.

	
--ignore-diags <ignore_diags>

	The number of diagonals to ignore. By default, equals the number of diagonals ignored during IC balancing.

	
--store

	Append columns with coverage (cov_cis_raw, cov_tot_raw), or (cov_cis_clr_weight_name, cov_tot_clr_weight_name) if calculating balanced coverage, to the cooler bin table. If clr_weight_name=None, also stores total cis counts in the cooler info

	
--chunksize <chunksize>

	Split the contact matrix pixel records into equally sized chunks to save memory and/or parallelize. Default is 10^7

	Default

	10000000.0

	
--bigwig

	Also save output as bigWig files for cis and total coverage with the names <output>.<cis/tot>.bw

	
--clr_weight_name <clr_weight_name>

	Name of the weight column. Specify to calculate coverage of balanced cooler.

	
-p, --nproc <nproc>

	Number of processes to split the work between. [default: 1, i.e. no process pool]

Arguments

	
COOL_PATH

	Required argument

dots

Call dots on a Hi-C heatmap that are not larger than max_loci_separation.

COOL_PATH : The paths to a .cool file with a balanced Hi-C map.

EXPECTED_PATH : The paths to a tsv-like file with expected signal,
including a header. Use the ‘::’ syntax to specify a column name.

Analysis will be performed for chromosomes referred to in EXPECTED_PATH, and
therefore these chromosomes must be a subset of chromosomes referred to in
COOL_PATH. Also chromosomes refered to in EXPECTED_PATH must be non-trivial,
i.e., contain not-NaN signal. Thus, make sure to prune your EXPECTED_PATH
before applying this script.

COOL_PATH and EXPECTED_PATH must be binned at the same resolution.

EXPECTED_PATH must contain at least the following columns for cis contacts:
‘region1/2’, ‘dist’, ‘n_valid’, value_name. value_name is controlled using
options. Header must be present in a file.

cooltools dots [OPTIONS] COOL_PATH EXPECTED_PATH

Options

	
--view, --regions <view>

	Path to a BED file with the definition of viewframe (regions) used in the calculation of EXPECTED_PATH. Dot-calling will be performed for these regions independently e.g. chromosome arms. Note that ‘–regions’ is the deprecated name of the option. Use ‘–view’ instead.

	
--clr-weight-name <clr_weight_name>

	Use cooler balancing weight with this name.

	Default

	weight

	
-p, --nproc <nproc>

	Number of processes to split the work between. [default: 1, i.e. no process pool]

	
--max-loci-separation <max_loci_separation>

	Limit loci separation for dot-calling, i.e., do not call dots for loci that are further than max_loci_separation basepair apart. 2-20MB is reasonable and would capture most of CTCF-dots.

	Default

	2000000

	
--max-nans-tolerated <max_nans_tolerated>

	Maximum number of NaNs tolerated in a footprint of every used filter. Must be controlled with caution, as large max-nans-tolerated, might lead to pixels scored in the padding area of the tiles to “penetrate” to the list of scored pixels for the statistical testing. [max-nans-tolerated <= 2*w]

	Default

	1

	
--tile-size <tile_size>

	Tile size for the Hi-C heatmap tiling. Typically on order of several mega-bases, and <= max_loci_separation.

	Default

	6000000

	
--num-lambda-bins <num_lambda_bins>

	Number of log-spaced bins to divide your adjusted expected between. Same as HiCCUPS_W1_MAX_INDX (40) in the original HiCCUPS.

	Default

	45

	
--fdr <fdr>

	False discovery rate (FDR) to control in the multiple hypothesis testing BH-FDR procedure.

	Default

	0.02

	
--clustering-radius <clustering_radius>

	Radius for clustering dots that have been called too close to each other.Typically on order of 40 kilo-bases, and >= binsize.

	Default

	39000

	
-v, --verbose

	Enable verbose output

	
-o, --output <output>

	Required Specify output file name to store called dots in a BEDPE-like format

Arguments

	
COOL_PATH

	Required argument

	
EXPECTED_PATH

	Required argument

eigs-cis

Perform eigen value decomposition on a cooler matrix to calculate
compartment signal by finding the eigenvector that correlates best with the
phasing track.

COOL_PATH : the paths to a .cool file with a balanced Hi-C map. Use the
‘::’ syntax to specify a group path in a multicooler file.

TRACK_PATH : the path to a BedGraph-like file that stores phasing track as
track-name named column.

BedGraph-like format assumes tab-separated columns chrom, start, stop and
track-name.

cooltools eigs-cis [OPTIONS] COOL_PATH

Options

	
--phasing-track <TRACK_PATH>

	Phasing track for orienting and ranking eigenvectors,provided as /path/to/track::track_value_column_name.

	
--view, --regions <view>

	Path to a BED file which defines which regions of the chromosomes to use (only implemented for cis contacts). Note that ‘–regions’ is the deprecated name of the option. Use ‘–view’ instead.

	
--n-eigs <n_eigs>

	Number of eigenvectors to compute.

	Default

	3

	
--clr-weight-name <clr_weight_name>

	Use balancing weight with this name. Using raw unbalanced data is not currently supported for eigenvectors.

	Default

	weight

	
--ignore-diags <ignore_diags>

	The number of diagonals to ignore. By default, equals the number of diagonals ignored during IC balancing.

	
-v, --verbose

	Enable verbose output

	
-o, --out-prefix <out_prefix>

	Required Save compartment track as a BED-like file. Eigenvectors and corresponding eigenvalues are stored in out_prefix.contact_type.vecs.tsv and out_prefix.contact_type.lam.txt

	
--bigwig

	Also save compartment track (E1) as a bigWig file with the name out_prefix.contact_type.bw

Arguments

	
COOL_PATH

	Required argument

eigs-trans

Perform eigen value decomposition on a cooler matrix to calculate
compartment signal by finding the eigenvector that correlates best with the
phasing track.

COOL_PATH : the paths to a .cool file with a balanced Hi-C map. Use the
‘::’ syntax to specify a group path in a multicooler file.

TRACK_PATH : the path to a BedGraph-like file that stores phasing track as
track-name named column.

BedGraph-like format assumes tab-separated columns chrom, start, stop and
track-name.

cooltools eigs-trans [OPTIONS] COOL_PATH

Options

	
--phasing-track <TRACK_PATH>

	Phasing track for orienting and ranking eigenvectors,provided as /path/to/track::track_value_column_name.

	
--view, --regions <view>

	Path to a BED file which defines which regions of the chromosomes to use (only implemented for cis contacts). Note that ‘–regions’ is the deprecated name of the option. Use ‘–view’ instead.

	
--n-eigs <n_eigs>

	Number of eigenvectors to compute.

	Default

	3

	
--clr-weight-name <clr_weight_name>

	Use balancing weight with this name. Using raw unbalanced data is not supported for saddles.

	Default

	weight

	
-v, --verbose

	Enable verbose output

	
-o, --out-prefix <out_prefix>

	Required Save compartment track as a BED-like file. Eigenvectors and corresponding eigenvalues are stored in out_prefix.contact_type.vecs.tsv and out_prefix.contact_type.lam.txt

	
--bigwig

	Also save compartment track (E1) as a bigWig file with the name out_prefix.contact_type.bw

Arguments

	
COOL_PATH

	Required argument

expected-cis

Calculate expected Hi-C signal for cis regions of chromosomal interaction map:
average of interactions separated by the same genomic distance, i.e.
are on the same diagonal on the cis-heatmap.

When balancing weights are not applied to the data, there is no
masking of bad bins performed.

COOL_PATH : The paths to a .cool file with a balanced Hi-C map.

cooltools expected-cis [OPTIONS] COOL_PATH

Options

	
-p, --nproc <nproc>

	Number of processes to split the work between.[default: 1, i.e. no process pool]

	
-c, --chunksize <chunksize>

	Control the number of pixels handled by each worker process at a time.

	Default

	10000000

	
-o, --output <output>

	Specify output file name to store the expected in a tsv format.

	
--view, --regions <view>

	Path to a 3 or 4-column BED file with genomic regions to calculated cis-expected on. When region names are not provided (no 4th column), UCSC-style region names are generated. Cis-expected is calculated for all chromosomes, when this is not specified. Note that ‘–regions’ is the deprecated name of the option. Use ‘–view’ instead.

	
--smooth

	If set, cis-expected is smoothed and result stored in an additional column e.g. balanced.avg.smoothed

	
--aggregate-smoothed

	If set, cis-expected is averaged over all regions and then smoothed. Result is stored in an additional column, e.g. balanced.avg.smoothed.agg. Ignored without smoothing

	
--smooth-sigma <smooth_sigma>

	Control smoothing with the standard deviation of the smoothing Gaussian kernel, ignored without smoothing.

	Default

	0.1

	
--clr-weight-name <clr_weight_name>

	Use balancing weight with this name stored in cooler.Provide empty argument to calculate cis-expected on raw data

	Default

	weight

	
--ignore-diags <ignore_diags>

	Number of diagonals to neglect for cis contact type

	Default

	2

Arguments

	
COOL_PATH

	Required argument

expected-trans

Calculate expected Hi-C signal for trans regions of chromosomal interaction map:
average of interactions in a rectangular block defined by a pair of regions, e.g.
inter-chromosomal blocks.

When balancing weights are not applied to the data, there is no
masking of bad bins performed.

COOL_PATH : The paths to a .cool file with a balanced Hi-C map.

cooltools expected-trans [OPTIONS] COOL_PATH

Options

	
-p, --nproc <nproc>

	Number of processes to split the work between.[default: 1, i.e. no process pool]

	
-c, --chunksize <chunksize>

	Control the number of pixels handled by each worker process at a time.

	Default

	10000000

	
-o, --output <output>

	Specify output file name to store the expected in a tsv format.

	
--view, --regions <view>

	Path to a 3 or 4-column BED file with genomic regions. Trans-expected is calculated on all pairwise combinations of these regions. When region names are not provided (no 4th column), UCSC-style region names are generated. Trans-expected is calculated for all inter-chromosomal pairs, when view is not specified. Note that ‘–regions’ is the deprecated name of the option. Use ‘–view’ instead.

	
--clr-weight-name <clr_weight_name>

	Use balancing weight with this name stored in cooler.Provide empty argument to calculate cis-expected on raw data

	Default

	weight

Arguments

	
COOL_PATH

	Required argument

genome

Utilities for binned genome assemblies.

cooltools genome [OPTIONS] COMMAND [ARGS]...

binnify

cooltools genome binnify [OPTIONS] CHROMSIZES_PATH BINSIZE

Options

	
--all-names

	Parse all chromosome names from file, not only default r”^chr[0-9]+$”, r”^chr[XY]$”, r”^chrM$”.

Arguments

	
CHROMSIZES_PATH

	Required argument

	
BINSIZE

	Required argument

digest

cooltools genome digest [OPTIONS] CHROMSIZES_PATH FASTA_PATH ENZYME_NAME

Arguments

	
CHROMSIZES_PATH

	Required argument

	
FASTA_PATH

	Required argument

	
ENZYME_NAME

	Required argument

fetch-chromsizes

cooltools genome fetch-chromsizes [OPTIONS] DB

Arguments

	
DB

	Required argument

gc

cooltools genome gc [OPTIONS] BINS_PATH FASTA_PATH

Options

	
--mapped-only

	

Arguments

	
BINS_PATH

	Required argument

	
FASTA_PATH

	Required argument

genecov

BINS_PATH is the path to bintable.

DB is the name of the genome assembly.
The gene locations will be automatically downloaded from teh UCSC goldenPath.

cooltools genome genecov [OPTIONS] BINS_PATH DB

Arguments

	
BINS_PATH

	Required argument

	
DB

	Required argument

insulation

Calculate the diamond insulation scores and call insulating boundaries.

IN_PATH : The path to a .cool file with a balanced Hi-C map.

	WINDOWThe window size for the insulation score calculations.
	Multiple space-separated values can be provided.
By default, the window size must be provided in units of bp.
When the flag –window-pixels is set, the window sizes must
be provided in units of pixels instead.

cooltools insulation [OPTIONS] IN_PATH WINDOW

Options

	
-p, --nproc <nproc>

	Number of processes to split the work between.[default: 1, i.e. no process pool]

	
-o, --output <output>

	Specify output file name to store the insulation in a tsv format.

	
--view, --regions <view>

	Path to a BED file containing genomic regions for which insulation scores will be calculated. Region names can be provided in a 4th column and should match regions and their names in expected. Note that ‘–regions’ is the deprecated name of the option. Use ‘–view’ instead.

	
--ignore-diags <ignore_diags>

	The number of diagonals to ignore. By default, equals the number of diagonals ignored during IC balancing.

	
--clr-weight-name <clr_weight_name>

	Use balancing weight with this name. Provide empty argument to calculate insulation on raw data (no masking bad pixels).

	Default

	weight

	
--min-frac-valid-pixels <min_frac_valid_pixels>

	The minimal fraction of valid pixels in a sliding diamond. Used to mask bins during boundary detection.

	Default

	0.66

	
--min-dist-bad-bin <min_dist_bad_bin>

	The minimal allowed distance to a bad bin. Use to mask bins after insulation calculation and during boundary detection.

	Default

	0

	
--threshold <threshold>

	Rule used to threshold the histogram of boundary strengths to exclude weakboundaries. ‘Li’ or ‘Otsu’ use corresponding methods from skimage.thresholding.Providing a float value will filter by a fixed threshold

	Default

	0

	
--window-pixels

	If set then the window sizes are provided in units of pixels.

	
--append-raw-scores

	Append columns with raw scores (sum_counts, sum_balanced, n_pixels) to the output table.

	
--chunksize <chunksize>

	
	Default

	20000000

	
--verbose

	Report real-time progress.

	
--bigwig

	Also save insulation tracks as a bigWig files for different window sizes with the names output.<window-size>.bw

Arguments

	
IN_PATH

	Required argument

	
WINDOW

	Optional argument(s)

pileup

Perform retrieval of the snippets from .cool file.

COOL_PATH : The paths to a .cool file with a balanced Hi-C map. Use the
‘::’ syntax to specify a group path in a multicooler file.

FEATURES_PATH : the path to a BED or BEDPE-like file that contains features for snipping windows.
If BED, then the features are on-diagonal. If BEDPE, then the features
can be off-diagonal (but not in trans or between different regions in the view).

cooltools pileup [OPTIONS] COOL_PATH FEATURES_PATH

Options

	
--view, --regions <view>

	Path to a BED file which defines which regions of the chromosomes to use. Required if EXPECTED_PATH is provided Note that ‘–regions’ is the deprecated name of the option. Use ‘–view’ instead.

	
--expected <expected>

	Path to the expected table. If provided, outputs OOE pileup. if not provided, outputs regular pileup.

	
--flank <flank>

	Size of flanks.

	Default

	100000

	
--features-format <features_format>

	Input features format.

	Options

	auto | BED | BEDPE

	
--clr-weight-name <clr_weight_name>

	Use balancing weight with this name.

	Default

	weight

	
-o, --out <out>

	Required Save output pileup as NPZ/HDF5 file.

	
--out-format <out_format>

	Type of output.

	Default

	NPZ

	Options

	NPZ | HDF5

	
--store-snips

	Flag indicating whether snips should be stored.

	
-p, --nproc <nproc>

	Number of processes to split the work between. [default: 1, i.e. no process pool]

	
--ignore-diags <ignore_diags>

	The number of diagonals to ignore. By default, equals the number of diagonals ignored during IC balancing.

	
--aggregate <aggregate>

	Function for calculating aggregate signal.

	Default

	none

	Options

	none | mean | median | std | min | max

	
-v, --verbose

	Enable verbose output

Arguments

	
COOL_PATH

	Required argument

	
FEATURES_PATH

	Required argument

random-sample

Pick a random sample of contacts from a Hi-C map.

IN_PATH : Input cooler path or URI.

OUT_PATH : Output cooler path or URI.

Specify the target sample size with either –count or –frac.

cooltools random-sample [OPTIONS] IN_PATH OUT_PATH

Options

	
-c, --count <count>

	The target number of contacts in the sample. The resulting sample size will not match it precisely. Mutually exclusive with –frac and –cis-count

	
--cis-count <cis_count>

	The target number of cis contacts in the sample. The resulting sample size will not match it precisely. Mutually exclusive with –count and –frac

	
-f, --frac <frac>

	The target sample size as a fraction of contacts in the original dataset. Mutually exclusive with –count and –cis-count

	
--exact

	If specified, use exact sampling that guarantees the size of the output sample. Otherwise, binomial sampling will be used and the sample size will be distributed around the target value.

	
-p, --nproc <nproc>

	Number of processes to split the work between.[default: 1, i.e. no process pool]

	
--chunksize <chunksize>

	The number of pixels loaded and processed per step of computation.

	Default

	10000000

Arguments

	
IN_PATH

	Required argument

	
OUT_PATH

	Required argument

rearrange

Rearrange data from a cooler according to a new genomic view

Parameters

	IN_PATHstr
	.cool file (or URI) with data to rearrange.

	OUT_PATHstr
	.cool file (or URI) to save the rearrange data.

	viewstr
	Path to a BED-like file which defines which regions of the chromosomes to use
and in what order. Has to be a valid viewframe (columns corresponding to region
coordinates followed by the region name), with potential additional columns.
Using –new-chrom-col and –orientation-col you can specify the new chromosome
names and whether to invert each region (optional).
If has no header with column names, assumes the new-chrom-col is the fifth
column and –orientation-col is the sixth, if they exist.

	new_chrom_colstr
	Column name in the view with new chromosome names.
If not provided and there is no column named ‘new_chrom’ in the view file, uses
original chromosome names.

	orientation_colstr
	Columns name in the view with orientations of each region (+ or -). - means the
region will be inverted.
If not providedand there is no column named ‘strand’ in the view file, assumes
all are forward oriented.

	assemblystr
	The name of the assembly for the new cooler. If None, uses the same as in the
original cooler.

	chunksizeint
	The number of pixels loaded and processed per step of computation.

	modestr
	(w)rite or (a)ppend to the output file (default: w)

cooltools rearrange [OPTIONS] IN_PATH OUT_PATH

Options

	
--view <view>

	Required Path to a BED-like file which defines which regions of the chromosomes to use and in what order. Using –new-chrom-col and –orientation-col you can specify the new chromosome names and whether to invert each region (optional)

	
--new-chrom-col <new_chrom_col>

	Column name in the view with new chromosome names. If not provided and there is no column named ‘new_chrom’ in the view file, uses original chromosome names

	
--orientation-col <orientation_col>

	Columns name in the view with orientations of each region (+ or -). If not providedand there is no column named ‘strand’ in the view file, assumes all are forward oriented

	
--assembly <assembly>

	The name of the assembly for the new cooler. If None, uses the same as in the original cooler.

	
--chunksize <chunksize>

	The number of pixels loaded and processed per step of computation.

	Default

	10000000

	
--mode <mode>

	(w)rite or (a)ppend to the output file (default: w)

	Options

	w | a

Arguments

	
IN_PATH

	Required argument

	
OUT_PATH

	Required argument

saddle

Calculate saddle statistics and generate saddle plots for an arbitrary
signal track on the genomic bins of a contact matrix.

COOL_PATH : The paths to a .cool file with a balanced Hi-C map. Use the
‘::’ syntax to specify a group path in a multicooler file.

TRACK_PATH : The path to bedGraph-like file with a binned compartment track
(eigenvector), including a header. Use the ‘::’ syntax to specify a column
name.

EXPECTED_PATH : The paths to a tsv-like file with expected signal,
including a header. Use the ‘::’ syntax to specify a column name.

Analysis will be performed for chromosomes referred to in TRACK_PATH, and
therefore these chromosomes must be a subset of chromosomes referred to in
COOL_PATH and EXPECTED_PATH.

COOL_PATH, TRACK_PATH and EXPECTED_PATH must be binned at the same
resolution (expect for EXPECTED_PATH in case of trans contact type).

EXPECTED_PATH must contain at least the following columns for cis contacts:
‘chrom’, ‘diag’, ‘n_valid’, value_name and the following columns for trans
contacts: ‘chrom1’, ‘chrom2’, ‘n_valid’, value_name value_name is controlled
using options. Header must be present in a file.

cooltools saddle [OPTIONS] COOL_PATH TRACK_PATH EXPECTED_PATH

Options

	
-t, --contact-type <contact_type>

	Type of the contacts to aggregate

	Default

	cis

	Options

	cis | trans

	
--min-dist <min_dist>

	Minimal distance between bins to consider, bp. If negative, removesthe first two diagonals of the data. Ignored with –contact-type trans.

	Default

	-1

	
--max-dist <max_dist>

	Maximal distance between bins to consider, bp. Ignored, if negative. Ignored with –contact-type trans.

	Default

	-1

	
-n, --n-bins <n_bins>

	Number of bins for digitizing track values.

	Default

	50

	
--vrange <vrange>

	Low and high values used for binning genome-wide track values, e.g. if range`=(-0.05, 0.05), `n-bins equidistant bins would be generated. Use to prevent extreme track values from exploding the bin range and to ensure consistent bins across several runs of compute_saddle command using different track files.

	
--qrange <qrange>

	Low and high values used for quantile bins of genome-wide track values,e.g. if `qrange`=(0.02, 0.98) the lower bin would start at the 2nd percentile and the upper bin would end at the 98th percentile of the genome-wide signal. Use to prevent the extreme track values from exploding the bin range.

	Default

	None, None

	
--clr-weight-name <clr_weight_name>

	Use balancing weight with this name.

	Default

	weight

	
--strength, --no-strength

	Compute and save compartment ‘saddle strength’ profile

	
--view, --regions <view>

	Path to a BED file containing genomic regions for which saddleplot will be calculated. Region names can be provided in a 4th column and should match regions and their names in expected. Note that ‘–regions’ is the deprecated name of the option. Use ‘–view’ instead.

	
-o, --out-prefix <out_prefix>

	Required Dump ‘saddledata’, ‘binedges’ and ‘hist’ arrays in a numpy-specific .npz container. Use numpy.load to load these arrays into a dict-like object. The digitized signal values are saved to a bedGraph-style TSV.

	
--fig <fig>

	Generate a figure and save to a file of the specified format. If not specified - no image is generated. Repeat for multiple output formats.

	Options

	png | jpg | svg | pdf | ps | eps

	
--scale <scale>

	Value scale for the heatmap

	Default

	log

	Options

	linear | log

	
--cmap <cmap>

	Name of matplotlib colormap

	Default

	coolwarm

	
--vmin <vmin>

	Low value of the saddleplot colorbar. Note: value in original units irrespective of used scale, and therefore should be positive for both vmin and vmax.

	
--vmax <vmax>

	High value of the saddleplot colorbar

	
--hist-color <hist_color>

	Face color of histogram bar chart

	
-v, --verbose

	Enable verbose output

Arguments

	
COOL_PATH

	Required argument

	
TRACK_PATH

	Required argument

	
EXPECTED_PATH

	Required argument

virtual4c

Generate virtual 4C profile from a contact map by extracting all interactions of a
given viewpoint with the rest of the genome.

COOL_PATH : the paths to a .cool file with a Hi-C map. Use the ‘::’ syntax to
specify a group path in a multicooler file.

VIEWPOINT : the viewpoint to use for the virtual 4C profile. Provide as a UCSC-string
(e.g. chr1:1-1000)

Note: this is a new (experimental) tool, the interface or output might change in a
future version.

cooltools virtual4c [OPTIONS] COOL_PATH VIEWPOINT

Options

	
--clr-weight-name <clr_weight_name>

	Use balancing weight with this name. Provide empty argument to calculate insulation on raw data (no masking bad pixels).

	Default

	weight

	
-o, --out-prefix <out_prefix>

	Required Save virtual 4C track as a BED-like file. Contact frequency is stored in out_prefix.v4C.tsv

	
--bigwig

	Also save virtual 4C track as a bigWig file with the name out_prefix.v4C.bw

	
-p, --nproc <nproc>

	Number of processes to split the work between. [default: 1, i.e. no process pool]

Arguments

	
COOL_PATH

	Required argument

	
VIEWPOINT

	Required argument

 API Reference

API Reference

subpackages

	cooltools.lib package
	common
	align_track_with_cooler()

	assign_regions()

	assign_regions_to_bins()

	assign_supports()

	assign_view_auto()

	assign_view_paired()

	make_cooler_view()

	mask_cooler_bad_bins()

	pool_decorator()

	view_from_track()

	numutils
	COMED()

	MAD()

	adaptive_coarsegrain()

	coarsen()

	dist_to_mask()

	fill_diag()

	fill_inf()

	fill_na()

	fill_nainf()

	get_diag()

	get_eig()

	get_finite()

	get_kernel()

	infer_mask2D()

	interp_nan()

	interpolate_bad_singletons()

	is_symmetric()

	normalize_score()

	persistent_log_bins()

	remove_good_singletons()

	robust_gauss_filter()

	set_diag()

	slice_sorted()

	smooth()

	stochastic_sd()

	weighted_groupby_mean()

	zoom_array()

	peaks
	find_peak_prominence()

	find_peak_prominence_iterative()

	peakdet()

	plotting
	get_cmap()

	gridspec_inches()

	list_to_colormap()

	schemas

cooltools.api.coverage module

	
cooltools.api.coverage.coverage(clr, ignore_diags=None, chunksize=10000000, use_lock=False, clr_weight_name=None, store=False, store_prefix='cov', nproc=1, map_functor=<class 'map'>)

	Calculate the sums of cis and genome-wide contacts (aka coverage aka marginals) for
a sparse Hi-C contact map in Cooler HDF5 format.
Note that for raw coverage (i.e. clr_weight_name=None) the sum(tot_cov) from this
function is two times the number of reads contributing to the cooler,
as each side contributes to the coverage.

	Parameters

	
	clr (cooler.Cooler) – Cooler object

	ignore_diags (int, optional) – Drop elements occurring on the first ignore_diags diagonals of the
matrix (including the main diagonal).
If None, equals the number of diagonals ignored during IC balancing.

	chunksize (int, optional) – Split the contact matrix pixel records into equally sized chunks to
save memory and/or parallelize. Default is 10^7

	clr_weight_name (str) – Name of the weight column. Specify to calculate coverage of balanced cooler.

	store (bool, optional) – If True, store the results in the input cooler file when finished. If clr_weight_name=None,
also stores total cis counts in the cooler info. Default is False.

	store_prefix (str, optional) – Name prefix of the columns of the bin table to save cis and total coverages.
Will add suffixes _cis and _tot, as well as _raw in the default case or _clr_weight_name if specified.

	nproc (int, optional) – How many processes to use for calculation. Ignored if map_functor is passed.

	map_functor (callable, optional) – Map function to dispatch the matrix chunks to workers.
If left unspecified, pool_decorator applies the following defaults: if nproc>1 this defaults to multiprocess.Pool;
If nproc=1 this defaults the builtin map.

	Returns

	
	cis_cov (1D array, whose shape is the number of bins in h5. Vector of bin sums in cis.)

	tot_cov (1D array, whose shape is the number of bins in h5. Vector of bin sums.)

cooltools.api.directionality module

	
cooltools.api.directionality.directionality(clr, window_bp=100000, balance='weight', min_dist_bad_bin=2, ignore_diags=None, chromosomes=None)

	Calculate the diamond insulation scores and call insulating boundaries.

	Parameters

	
	clr (cooler.Cooler) – A cooler with balanced Hi-C data.

	window_bp (int) – The size of the sliding diamond window used to calculate the insulation
score.

	min_dist_bad_bin (int) – The minimal allowed distance to a bad bin. Do not calculate insulation
scores for bins having a bad bin closer than this distance.

	ignore_diags (int) – The number of diagonals to ignore. If None, equals the number of
diagonals ignored during IC balancing.

	Returns

	ins_table (pandas.DataFrame) – A table containing the insulation scores of the genomic bins and
the insulating boundary strengths.

cooltools.api.dotfinder module

Collection of functions related to dot-calling

The main user-facing API function is:

dots(
 clr,
 expected,
 expected_value_col="balanced.avg",
 clr_weight_name="weight",
 view_df=None,
 kernels=None,
 max_loci_separation=10_000_000,
 max_nans_tolerated=1,
 n_lambda_bins=40,
 lambda_bin_fdr=0.1,
 clustering_radius=20_000,
 cluster_filtering=None,
 tile_size=5_000_000,
 nproc=1,
)

This function implements HiCCUPS-style dot calling, but enables user-specified
modifications at multiple steps. The current implementation makes two passes
over the input data, first to create a histogram of pixel enrichment values,
and second to extract significantly enriched pixels.

	The function starts with compatibility verifications

	Recommendation or verification for kernels is done next.
Custom kernels must satisfy properties including: square shape,
equal sizes, odd sizes, zeros in the middle, etc. By default,
HiCCUPS-style kernels are recommended based on the binsize.

	Lambda bins are defined for multiple hypothesis
testing separately for different value ranges of the locally adjusted expected.
Currently, log-binned lambda-bins are hardcoded using a pre-defined
BASE of 2^(1/3). n_lambda_bins controls the total number of bins.
for the clr, expected and view of interest.

	Genomic regions in the specified view`(all chromosomes by default)
are split into smaller tiles of size `tile_size.

	scoring_and_histogramming_step() is performed independently
on the genomic tiles. In this step, locally adjusted expected is
calculated using convolution kernels for each pixel in the tile.
All surveyed pixels are histogrammed according to their adjusted
expected and raw observed counts. Locally adjusted expected is
not stored in memory.

	Chunks of histograms are aggregated together and a modified BH-FDR
procedure is applied to the result in determine_thresholds().
This returns thresholds for statistical significance
in each lambda-bin (for observed counts), along with the adjusted
p-values (q-values).

	Calculated thresholds are used to extract statistically significant
pixels in scoring_and_extraction_step(). Because locally adjusted
expected is not stored in memory, it is re-caluclated
during this step, which makes it computationally intensive.
Locally adjusted expected values are required in order to apply
different thresholds of significance depending on the lambda-bin.

	Returned filtered pixels, or ‘dots’, are significantly enriched
relative to their locally adjusted expecteds and thus have potential
biological interest. Dots are further annotated with their
genomic coordinates and q-values (adjusted p-values) for
all applied kernels.

	All further steps perform optional post-processing on called dots

	enriched pixels that are within clustering_radius of each other
are clustered together and the brightest one is selected as the
representative position of a dot.

	cluster-representatives along with “singletons” (enriched pixels
that are not part of any cluster) can be subjected to further
empirical enrichment filtering in cluster_filtering_hiccups(). This
both requires clustered dots exceed prescribed enrichment thresholds
relative to their local neighborhoods and that singletons pass an
even more stringent q-value threshold.

	
cooltools.api.dotfinder.adjusted_exp_name(kernel_name)

	

	
cooltools.api.dotfinder.annotate_pixels_with_qvalues(pixels_df, qvalues, obs_raw_name='count')

	Add columns with the qvalues to a DataFrame of scored pixels

	Parameters

	
	pixels_df (pandas.DataFrame) – a DataFrame with pixel coordinates that must have at least 2 columns
named ‘bin1_id’ and ‘bin2_id’, where first is pixels’s row and the
second is pixel’s column index.

	qvalues (dict of DataFrames) – A dictionary with keys being kernel names and values DataFrames
storing q-values for each observed count values in each lambda-
bin. Colunms are Intervals defined by ‘ledges’ boundaries.
Rows corresponding to a range of observed count values.

	obs_raw_name (str) – Name of the column/field that carry number of counts per pixel,
i.e. observed raw counts.

	Returns

	pixels_qvalue_df (pandas.DataFrame) – DataFrame of pixels with additional columns la_exp.{k}.qval,
storing q-values (adjusted p-values) corresponding to the count
value of a pixel, its kernel, and a lambda-bin it belongs to.

	
cooltools.api.dotfinder.bp_to_bins(basepairs, binsize)

	

	
cooltools.api.dotfinder.clust_2D_pixels(pixels_df, threshold_cluster=2, bin1_id_name='bin1_id', bin2_id_name='bin2_id', clust_label_name='c_label', clust_size_name='c_size')

	Group significant pixels by proximity using Birch clustering. We use
“n_clusters=None”, which implies no AgglomerativeClustering, and thus
simply reporting “blobs” of pixels of radii <=”threshold_cluster” along
with corresponding blob-centroids as well.

	Parameters

	
	pixels_df (pandas.DataFrame) – a DataFrame with pixel coordinates that must have at least 2 columns
named ‘bin1_id’ and ‘bin2_id’, where first is pixels’s row and the
second is pixel’s column index.

	threshold_cluster (int) – clustering radius for Birch clustering derived from ~40kb radius of
clustering and bin size.

	bin1_id_name (str) – Name of the 1st coordinate (row index) in ‘pixel_df’, by default
‘bin1_id’. ‘start1/end1’ could be usefull as well.

	bin2_id_name (str) – Name of the 2nd coordinate (column index) in ‘pixel_df’, by default
‘bin2_id’. ‘start2/end2’ could be usefull as well.

	clust_label_name (str) – Name of the cluster of pixels label. “c_label” by default.

	clust_size_name (str) – Name of the cluster of pixels size. “c_size” by default.

	Returns

	peak_tmp (pandas.DataFrame) – DataFrame with the following columns:
[c+bin1_id_name, c+bin2_id_name, clust_label_name, clust_size_name]
row/col (bin1/bin2) are coordinates of centroids,
label and sizes are unique pixel-cluster
labels and their corresponding sizes.

	
cooltools.api.dotfinder.cluster_filtering_hiccups(centroids, obs_raw_name='count', enrichment_factor_vh=1.5, enrichment_factor_d_and_ll=1.75, enrichment_factor_d_or_ll=2.0, FDR_orphan_threshold=0.02)

	Centroids of enriched pixels can be filtered to further minimize
the amount of false-positive dot-calls.

First, centroids are filtered on enrichment relative to the
locally-adjusted expected for the “donut”, “lowleft”, “vertical”,
and “horizontal” kernels. Additionally, singleton pixels
(i.e. pixels that do not belong to a cluster) are filtered based on
a combined q-values for all kernels. This empirical filtering approach
was developed in Rao et al 2014 and results in a conservative dot-calls
with the low rate of false-positive calls.

	Parameters

	
	centroids (pd.DataFrame) – DataFrame that stores enriched and clustered pixels.

	obs_raw_name (str) – name of the column with raw observed pixel counts

	enrichment_factor_vh (float) – minimal enrichment factor for pixels relative to
both “vertical” and “horizontal” kernel.

	enrichment_factor_d_and_ll (float) – minimal enrichment factor for pixels relative to
both “donut” and “lowleft” kernels.

	enrichment_factor_d_or_ll (float) – minimal enrichment factor for pixels relative to
either “donut” or” “lowleft” kenels.

	FDR_orphan_threshold (float) – minimal combined q-value for singleton pixels.

	Returns

	filtered_centroids (pd.DataFrame) – filtered dot-calls

	
cooltools.api.dotfinder.clustering_step(scored_df, dots_clustering_radius, assigned_regions_name='region', obs_raw_name='count')

	Group together adjacent significant pixels into clusters after
the lambda-binning multiple hypothesis testing by iterating over
assigned regions and calling clust_2D_pixels.

	Parameters

	
	scored_df (pandas.DataFrame) – DataFrame with enriched pixels that are ready to be
clustered and are annotated with their genomic coordinates.

	dots_clustering_radius (int) – Birch-clustering threshold.

	assigned_regions_name (str | None) – Name of the column in scored_df to use for grouping pixels
before clustering. When None, full chromosome clustering is done.

	obs_raw_name (str) – name of the column with raw observed pixel counts

	Returns

	centroids (pandas.DataFrame) – Pixels from ‘scored_df’ annotated with clustering information.

Notes

‘dots_clustering_radius’ in Birch clustering algorithm corresponds to a
double the clustering radius in the “greedy”-clustering used in HiCCUPS

	
cooltools.api.dotfinder.determine_thresholds(gw_hist, fdr)

	given a ‘gw_hist’ histogram of observed counts
for each lambda-bin and for each kernel-type, and
also given a FDR, calculate q-values for each observed
count value in each lambda-bin for each kernel-type.

	Parameters

	
	gw_hist_kernels (dict) – dictionary {kernel_name : 2D_hist}, where ‘2D_hist’ is a pd.DataFrame

	fdr (float) – False Discovery Rate level

	Returns

	
	threshold_df (dict) – each threshold_df[k] is a Series indexed by la_exp intervals
(IntervalIndex) and it is all we need to extract “good” pixels from
each chunk …

	qvalues (dict) – A dictionary with keys being kernel names and values pandas.DataFrames
storing q-values: each column corresponds to a lambda-bin,
while rows correspond to observed pixels values.

	
cooltools.api.dotfinder.dots(clr, expected, expected_value_col='balanced.avg', clr_weight_name='weight', view_df=None, kernels=None, max_loci_separation=10000000, max_nans_tolerated=1, n_lambda_bins=40, lambda_bin_fdr=0.1, clustering_radius=20000, cluster_filtering=None, tile_size=5000000, nproc=1)

	Call dots on a cooler {clr}, using {expected} defined in regions specified
in {view_df}.

All convolution kernels specified in {kernels} will be all applied to the {clr},
and statistical testing will be performed separately for each kernel. A convolutional
kernel is a small squared matrix (e.g. 7x7) of zeros and ones
that defines a “mask” to extract local expected around each pixel. Since the
enrichment is calculated relative to the central pixel, kernel width should
be an odd number >=3.

	Parameters

	
	clr (cooler.Cooler) – A cooler with balanced Hi-C data.

	expected (DataFrame in expected format) – Diagonal summary statistics for each chromosome, and name of the column
with the values of expected to use.

	expected_value_col (str) – Name of the column in expected that holds the values of expected

	clr_weight_name (str) – Name of the column in the clr.bins to use as balancing weights.
Using raw unbalanced data is not supported for dot-calling.

	view_df (viewframe) – Viewframe with genomic regions, at the moment the view has to match the
view used for generating expected. If None, generate from the cooler.

	kernels ({ str:np.ndarray } | None) – A dictionary of convolution kernels to be used for calculating locally adjusted
expected. If None the default kernels from HiCCUPS are going to be recommended
based on the resolution of the cooler.

	max_loci_separation (int) – Miaximum loci separation for dot-calling, i.e., do not call dots for
loci that are further than max_loci_separation basepair apart. default 10Mb.

	max_nans_tolerated (int) – Maximum number of NaNs tolerated in a footprint of every used kernel
Adjust with caution, as large max_nans_tolerated, might lead to artifacts in
pixels scoring.

	n_lambda_bins (int) – Number of log-spaced bins, where FDR-testing will be performed independently.
TODO: generate lambda-bins on the fly based on the dynamic range of the data (i.e. maximum pixel count)

	lambda_bin_fdr (float) – False discovery rate (FDR) for multiple hypothesis testing BH-FDR procedure, applied per lambda bin.

	clustering_radius (None | int) – Cluster enriched pixels with a given radius. “Brightest” pixels in each group
will be reported as the final dot-calls. If None, no clustering is performed.

	cluster_filtering (bool) – whether to apply additional filtering to centroids after clustering, using cluster_filtering_hiccups()

	tile_size (int) – Tile size for the Hi-C heatmap tiling. Typically on order of several mega-bases, and <= max_loci_separation.
Controls tradeoff between memory consumption and speed of execution.

	nproc (int) – Number of processes to use for multiprocessing.

	Returns

	dots (pandas.DataFrame) – BEDPE-style dataFrame with genomic coordinates of called dots and additional annotations.

Notes

‘clustering_radius’ in Birch clustering algorithm corresponds to a
double the clustering radius in the “greedy”-clustering used in HiCCUPS
(to be tested).

TODO describe sequence of processing steps

	
cooltools.api.dotfinder.extract_scored_pixels(scored_df, thresholds, ledges, obs_raw_name='count')

	Implementation of HiCCUPS-like lambda-binning statistical procedure.
Use FDR thresholds for different “classes” of hypothesis
(classified by their locally-adjusted expected (la_exp) scores),
in order to extract “enriched” pixels.

	Parameters

	
	scored_df (pd.DataFrame) – A table with the scoring information for a group of pixels.

	thresholds (dict) – A dictionary {kernel_name : lambda_thresholds}, where ‘lambda_thresholds’
are pd.Series with FDR thresholds indexed by lambda-bin intervals

	ledges (ndarray) – An ndarray with bin lambda-edges for groupping locally adjusted
expecteds, i.e., classifying statistical hypothesis into lambda-bins.
Left-most bin (-inf, 1], and right-most one (value,+inf].

	obs_raw_name (str) – Name of the column/field with number of counts per pixel,
i.e. observed raw counts.

	Returns

	scored_df_slice (pandas.DataFrame) – Filtered DataFrame of pixels that satisfy thresholds.

	
cooltools.api.dotfinder.generate_tiles_diag_band(clr, view_df, pad_size, tile_size, band_to_cover)

	A generator yielding corrdinates of heatmap tiles that are needed to cover
the requested band_to_cover around diagonal. Each tile is “padded” with
the pad of size ‘pad_size’ to allow for convolution near the boundary of
a tile.

	Parameters

	
	clr (cooler) – Cooler object to use to extract chromosome extents.

	view_df (viewframe) – Viewframe with genomic regions to process, chrom, start, end, name.

	pad_size (int) – Size of padding around each tile. Typically the outer size of the
kernel.

	tile_size (int) – Size of the heatmap tile.

	band_to_cover (int) – Size of the diagonal band to be covered by the generated tiles.
Typically correspond to the max_loci_separation for called dots.

	Returns

	tile_coords (tuple) – Generator of tile coordinates, i.e. tuples of three:
(region_name, tile_span_i, tile_span_j), where ‘tile_span_i/j’
each is a tuple of bin ids (bin_start, bin_end).

	
cooltools.api.dotfinder.get_adjusted_expected_tile_some_nans(origin_ij, observed, expected, bal_weights, kernels)

	Get locally adjusted expected for a collection of local-filters (kernels).

Such locally adjusted expected, ‘Ek’ for a given kernel,
can serve as a baseline for deciding whether a given
pixel is enriched enough to call it a feature (dot-loop,
flare, etc.) in a downstream analysis.

For every pixel of interest [i,j], locally adjusted
expected is a product of a global expected in that
pixel E_bal[i,j] and an enrichment of local environ-
ment of the pixel, described with a given kernel:

 KERNEL[i,j](O_bal)
Ek_bal[i,j] = E_bal[i,j]* ------------------
 KERNEL[i,j](E_bal)

where KERNEL[i,j](X) is a result of convolution
between the kernel and a slice of matrix X centered
around (i,j). See link below for details:
https://en.wikipedia.org/wiki/Kernel_(image_processing)

Returned values for observed and all expecteds
are rescaled back to raw-counts, for the sake of
downstream statistical analysis, which is using
Poisson test to decide is a given pixel is enriched.
(comparison between balanced values using Poisson-
test is intractable):

 KERNEL[i,j](O_bal)
Ek_raw[i,j] = E_raw[i,j]* ------------------ ,
 KERNEL[i,j](E_bal)

where E_raw[i,j] is:

 1 1
-------------- * -------------- * E_bal[i,j]
bal_weights[i] bal_weights[j]

	Parameters

	
	origin_ij ((int,int) tuple) – tuple of interegers that specify the
location of an observed matrix slice.
Measured in bins, not in nucleotides.

	observed (numpy.ndarray) – square symmetrical dense-matrix
that contains balanced observed O_bal

	expected (numpy.ndarray) – square symmetrical dense-matrix
that contains expected, calculated
based on balanced observed: E_bal.

	bal_weights (numpy.ndarray or (numpy.ndarray, numpy.ndarray)) – 1D vector used to turn raw observed
into balanced observed for a slice of
a matrix with the origin_ij on the diagonal;
and a tuple/list of a couple of 1D arrays
in case it is a slice with an arbitrary
origin_ij.

	kernels (dict of (str, numpy.ndarray)) – dictionary of kernels/masks to perform
convolution of the heatmap. Kernels
describe the local environment, and
used to estimate baseline for finding
enriched/prominent peaks.
Peak must be enriched with respect to
all local environments (all kernels),
to be considered significant.
Dictionay keys must contain names for
each kernel.
Note, scipy.ndimage.convolve first flips kernel
and only then applies it to matrix.

	Returns

	peaks_df (pandas.DataFrame) – DataFrame with the results of locally adjusted calculations
for every kernel for a given slice of input matrix.

Notes

	Reported columns:
	bin1_id - bin1_id index (row), adjusted to tile_start_i
bin2_id - bin bin2_id index, adjusted to tile_start_j
la_exp - locally adjusted expected (for each kernel)
la_nan - number of NaNs around (each kernel’s footprint)
exp.raw - global expected, rescaled to raw-counts
obs.raw(counts) - observed values in raw-counts.

Depending on the intial tiling of the interaction matrix,
concatened peaks_df may require “deduplication”, as some pixels
can be evaluated in several tiles (e.g. near the tile edges).
Default tilitng in the dots functions, should avoid this problem.

	
cooltools.api.dotfinder.histogram_scored_pixels(scored_df, kernels, ledges, obs_raw_name='count')

	An attempt to implement HiCCUPS-like lambda-binning statistical procedure.
This function aims at building up a histogram of locally adjusted
expected scores for groups of characterized pixels.

Such histograms are subsequently used to compute FDR thresholds
for different “classes” of hypothesis (classified by their
locally-adjusted expected (la_exp)).

	Parameters

	
	scored_df (pd.DataFrame) – A table with the scoring information for a group of pixels.

	kernels (dict) – A dictionary with keys being kernels names and values being ndarrays
representing those kernels.

	ledges (ndarray) – An ndarray with bin lambda-edges for groupping locally adjusted
expecteds, i.e., classifying statistical hypothesis into lambda-bins.
Left-most bin (-inf, 1], and right-most one (value,+inf].

	obs_raw_name (str) – Name of the column/field that carry number of counts per pixel,
i.e. observed raw counts.

	Returns

	hists (dict of pandas.DataFrame) – A dictionary of pandas.DataFrame with lambda/observed 2D histogram for
every kernel-type.

Notes

returning histograms corresponding to the chunks of scored pixels.

	
cooltools.api.dotfinder.is_compatible_kernels(kernels, binsize, max_nans_tolerated)

	
	TODO implement checks for kernels:
	
	matrices are of the same size

	they should be squared (too restrictive ? maybe pad with 0 as needed)

	dimensions are odd, to have a center pixel to refer to

	they can be turned into int 1/0 ones (too restrictive ? allow weighted kernels ?)

	the central pixel should be zero perhaps (unless weights are allowed 4sure)

	maybe introduce an upper limit to the size - to avoid crazy long calculations

	check relative to the binsize maybe ? what’s the criteria ?

	
cooltools.api.dotfinder.nans_inkernel_name(kernel_name)

	

	
cooltools.api.dotfinder.recommend_kernels(binsize)

	Return a recommended set of convolution kernels for dot-calling
based on the resolution, or binsize, of the input data.

This function currently recommends the four kernels used in the HiCCUPS method:
donut, horizontal, vertical, lowerleft. Kernels are recommended for resolutions
near 5 kb, 10 kb, and 25 kb. Dots are not typically visible at lower resolutions
(binsize >28kb) and the majority of datasets are too sparse for dot-calling
at very high resolutions (<4kb). Given this, default kernels are not
recommended for resolutions outside this range.

	Parameters

	binsize (integer) – binsize of the provided cooler

	Returns

	kernels ({str:ndarray}) – dictionary of convolution kernels as ndarrays, with their
names as keys.

	
cooltools.api.dotfinder.score_tile(tile_cij, clr, expected_indexed, expected_value_col, clr_weight_name, kernels, max_nans_tolerated, band_to_cover)

	The main working function that given a tile of a heatmap, applies kernels to
perform convolution to calculate locally-adjusted expected and then
calculates a p-value for every meaningfull pixel against these
locally-adjusted expected (la_exp) values.

	Parameters

	
	tile_cij (tuple) – Tuple of 3: region name, tile span row-wise, tile span column-wise:
(region, tile_span_i, tile_span_j), where tile_span_i = (start_i, end_i), and
tile_span_j = (start_j, end_j).

	clr (cooler) – Cooler object to use to extract Hi-C heatmap data.

	expected_indexed (pandas.DataFrame) – DataFrame with cis-expected, indexed with ‘region1’, ‘region2’, ‘dist’.

	expected_value_col (str) – Name of a value column in expected DataFrame

	clr_weight_name (str) – Name of a value column with balancing weights in a cooler.bins()
DataFrame. Typically ‘weight’.

	kernels (dict) – A dictionary with keys being kernels names and values being ndarrays
representing those kernels.

	max_nans_tolerated (int) – Number of NaNs tolerated in a footprint of every kernel.

	band_to_cover (int) – Results would be stored only for pixels connecting loci closer than
‘band_to_cover’.

	Returns

	res_df (pandas.DataFrame) – results: annotated pixels with calculated locally adjusted expected
for every kernels, observed, precalculated pvalues, number of NaNs in
footprint of every kernels, all of that in a form of an annotated
pixels DataFrame for eligible pixels of a given tile.

	
cooltools.api.dotfinder.scoring_and_extraction_step(clr, expected_indexed, expected_value_col, clr_weight_name, tiles, kernels, ledges, thresholds, max_nans_tolerated, loci_separation_bins, nproc, bin1_id_name='bin1_id', bin2_id_name='bin2_id', map_functor=<class 'map'>)

	This implements the 2nd step of the lambda-binning scoring procedure,
extracting pixels that are FDR compliant.

In short, this combines scoring with with extraction into a
single pipeline of per-chunk operations/transforms.

	
cooltools.api.dotfinder.scoring_and_histogramming_step(clr, expected_indexed, expected_value_col, clr_weight_name, tiles, kernels, ledges, max_nans_tolerated, loci_separation_bins, nproc, map_functor=<class 'map'>)

	This implements the 1st step of the lambda-binning scoring procedure - histogramming.

In short, this pipes a scoring operation together with histogramming into a
single pipeline of per-chunk operations/transforms.

	
cooltools.api.dotfinder.tile_square_matrix(matrix_size, offset, tile_size, pad=0)

	Generate a stream of coordinates of tiles that cover a matrix of a given size.
Matrix has to be square, on-digaonal one: e.g. corresponding to a chromosome
or a chromosomal arm.

	Parameters

	
	matrix_size (int) – Size of a squared matrix

	offset (int) – Offset coordinates of generated tiles by ‘offset’

	tile_size (int) – Requested size of the tiles. Tiles near
the right and botoom edges could be rectangular
and smaller then ‘tile_size’

	pad (int) – Small padding around each tile to be included in the yielded coordinates.

	Yields

	Pairs of indices/coordinates of every tile ((start_i, end_i), (start_j, end_j))

Notes

Generated tiles coordinates [start_i,end_i) , [start_i,end_i)
can be used to fetch heatmap tiles from cooler:
>>> clr.matrix()[start_i:end_i, start_j:end_j]

‘offset’ is useful when a given matrix is part of a
larger matrix (a given chromosome or arm), and thus
all coordinated needs to be offset to get absolute
coordinates.

Tiles are non-overlapping (pad=0), but tiles near
the right and bottom edges could be rectangular:

	
	
	
	
	
	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	
	
	
	
	

	
	
	

	
	… *

	
	
	
	
	

	
	

	
	
	
	
	
	
	
	
	

cooltools.api.eigdecomp module

	
cooltools.api.eigdecomp.cis_eig(A, n_eigs=3, phasing_track=None, ignore_diags=2, clip_percentile=0, sort_metric=None)

	Compute compartment eigenvector on a dense cis matrix.

Note that the amplitude of compartment eigenvectors is weighted by their
corresponding eigenvalue

	Parameters

	
	A (2D array) – balanced dense contact matrix

	n_eigs (int) – number of eigenvectors to compute

	phasing_track (1D array, optional) – if provided, eigenvectors are flipped to achieve a positive correlation
with phasing_track.

	ignore_diags (int) – the number of diagonals to ignore

	clip_percentile (float) – if >0 and <100, clip pixels with diagonal-normalized values
higher than the specified percentile of matrix-wide values.

	sort_metric (str) – If provided, re-sort eigenvecs and eigvals in the order of
decreasing correlation between phasing_track and eigenvector, using the
specified measure of correlation. Possible values:
‘pearsonr’ - sort by decreasing Pearson correlation.
‘var_explained’ - sort by decreasing absolute amount of variation in
eigvecs explained by phasing_track (i.e. R^2 * var(eigvec))
‘MAD_explained’ - sort by decreasing absolute amount of Median Absolute
Deviation from the median of eigvecs explained by phasing_track
(i.e. COMED(eigvec, phasing_track) * MAD(eigvec)).
‘spearmanr’ - sort by decreasing Spearman correlation.
This option is designed to report the most “biologically” informative
eigenvectors first, and prevent eigenvector swapping caused by
translocations. In reality, however, sometimes it shows poor
performance and may lead to reporting of non-informative eigenvectors.
Off by default.

	Returns

	
	eigenvalues, eigenvectors

	.. note:: ALWAYS check your EVs by eye. The first one occasionally does – not reflect the compartment structure, but instead describes
chromosomal arms or translocation blowouts.

	
cooltools.api.eigdecomp.eigs_cis(clr, phasing_track=None, view_df=None, n_eigs=3, clr_weight_name='weight', ignore_diags=None, clip_percentile=99.9, sort_metric=None, map=<class 'map'>)

	Compute compartment eigenvector for a given cooler clr in a number of
symmetric intra chromosomal regions defined in view_df (cis-regions), or for each
chromosome.

Note that the amplitude of compartment eigenvectors is weighted by their
corresponding eigenvalue. Eigenvectors can be oriented by passing a binned
phasing_track with the same resolution as the cooler.

	Parameters

	
	clr (cooler) – cooler object to fetch data from

	phasing_track (DataFrame) – binned track with the same resolution as cooler bins, the fourth column is
used to phase the eigenvectors, flipping them to achieve a positive correlation.

	view_df (iterable or DataFrame, optional) – if provided, eigenvectors are calculated for the regions of the view only,
otherwise chromosome-wide eigenvectors are computed, for chromosomes
specified in phasing_track.

	n_eigs (int) – number of eigenvectors to compute

	clr_weight_name (str) – name of the column with balancing weights to be used.

	ignore_diags (int, optional) – the number of diagonals to ignore. Derived from cooler metadata
if not specified.

	clip_percentile (float) – if >0 and <100, clip pixels with diagonal-normalized values
higher than the specified percentile of matrix-wide values.

	sort_metric (str) – If provided, re-sort eigenvecs and eigvals in the order of
decreasing correlation between phasing_track and eigenvector, using the
specified measure of correlation. Possible values:
‘pearsonr’ - sort by decreasing Pearson correlation.
‘var_explained’ - sort by decreasing absolute amount of variation in
eigvecs explained by phasing_track (i.e. R^2 * var(eigvec))
‘MAD_explained’ - sort by decreasing absolute amount of Median Absolute
Deviation from the median of eigvecs explained by phasing_track
(i.e. COMED(eigvec, phasing_track) * MAD(eigvec)).
‘spearmanr’ - sort by decreasing Spearman correlation.
This option is designed to report the most “biologically” informative
eigenvectors first, and prevent eigenvector swapping caused by
translocations. In reality, however, sometimes it shows poor
performance and may lead to reporting of non-informative eigenvectors.
Off by default.

	map (callable, optional) – Map functor implementation.

	Returns

	
	eigvals, eigvec_table -> DataFrames with eigenvalues for each region and

	a table of eigenvectors filled in the bins table.

	.. note:: ALWAYS check your EVs by eye. The first one occasionally does – not reflect the compartment structure, but instead describes
chromosomal arms or translocation blowouts. Possible mitigations:
employ view_df (e.g. arms) to avoid issues with chromosomal arms,
consider blacklisting regions with translocations during balancing.

	
cooltools.api.eigdecomp.eigs_trans(clr, phasing_track=None, n_eigs=3, partition=None, clr_weight_name='weight', sort_metric=None, **kwargs)

	

	
cooltools.api.eigdecomp.trans_eig(A, partition, n_eigs=3, perc_top=99.95, perc_bottom=1, phasing_track=None, sort_metric=False)

	Compute compartmentalization eigenvectors on trans contact data

	Parameters

	
	A (2D array) – balanced whole genome contact matrix

	partition (sequence of int) – bin offset of each contiguous region to treat separately (e.g.,
chromosomes or chromosome arms)

	n_eigs (int) – number of eigenvectors to compute; default = 3

	perc_top (float (percentile)) – filter - clip trans blowout contacts above this cutoff; default = 99.95

	perc_bottom (float (percentile)) – filter - remove bins with trans coverage below this cutoff; default=1

	phasing_track (1D array, optional) – if provided, eigenvectors are flipped to achieve a positive correlation
with phasing_track.

	sort_metric (str) – If provided, re-sort eigenvecs and eigvals in the order of
decreasing correlation between phasing_track and eigenvector, using the
specified measure of correlation. Possible values:
‘pearsonr’ - sort by decreasing Pearson correlation.
‘var_explained’ - sort by decreasing absolute amount of variation in
eigvecs explained by phasing_track (i.e. R^2 * var(eigvec))
‘MAD_explained’ - sort by decreasing absolute amount of Median Absolute
Deviation from the median of eigvecs explained by phasing_track
(i.e. COMED(eigvec, phasing_track) * MAD(eigvec)).
‘spearmanr’ - sort by decreasing Spearman correlation.
This option is designed to report the most “biologically” informative
eigenvectors first, and prevent eigenvector swapping caused by
translocations. In reality, however, sometimes it shows poor
performance and may lead to reporting of non-informative eigenvectors.
Off by default.

	Returns

	
	eigenvalues, eigenvectors

	.. note:: ALWAYS check your EVs by eye. The first one occasionally does – not reflect the compartment structure, but instead describes
chromosomal arms or translocation blowouts.

cooltools.api.expected module

	
cooltools.api.expected.blocksum_pairwise(clr, view_df, transforms={}, clr_weight_name='weight', chunksize=1000000, map=<class 'map'>)

	Summary statistics on rectangular blocks of all (trans-)pairwise combinations
of genomic regions in the view_df (aka trans-expected).

Note

This is a special case of asymmetric block-level summary stats, that can be
calculated very efficiently. Regions in view_df are assigned to pixels only
once and pixels falling into a given asymmetric block i != j are summed up.

	Parameters

	
	clr (cooler.Cooler) – Cooler object

	view_df (viewframe) – view_df of regions defining blocks for summary calculations,
has to be sorted according to the order of chromosomes in clr.

	transforms (dict of str -> callable, optional) – Transformations to apply to pixels. The result will be assigned to
a temporary column with the name given by the key. Callables take
one argument: the current chunk of the (annotated) pixel dataframe.

	clr_weight_name (str) – name of the balancing weight column in cooler bin-table used
to count “bad” pixels per block. Set to None not ot mask
“bad” pixels (raw data only).

	chunksize (int, optional) – Size of pixel table chunks to process

	map (callable, optional) – Map functor implementation.

	Returns

	DataFrame with entries for each blocks (region1, region2, n_valid, count.sum)

	
cooltools.api.expected.combine_binned_expected(binned_exp, binned_exp_slope=None, Pc_name='balanced.avg', der_smooth_function_combined=<function <lambda>>, spread_funcs='logstd', spread_funcs_slope='std', minmax_drop_bins=2, concat_original=False)

	Combines by-region log-binned expected and slopes into genome-wide averages,
handling small chromosomes and “corners” in an optimal fashion, robust to
outliers. Calculates spread of by-chromosome P(s) and slopes, also in an optimal fashion.

	Parameters

	
	binned_exp (dataframe) – binned expected as outputed by logbin_expected

	binned_exp_slope (dataframe or None) – If provided, estimates spread of slopes.
Is necessary if concat_original is True

	Pc_name (str) – Name of the column with the probability of contacts.
Defaults to “balanced.avg”.

	der_smooth_function_combined (callable) – A smoothing function for calculating slopes on combined data

	spread_funcs ("minmax", "std", "logstd" or a function (see below)) – A way to estimate the spread of the P(s) curves between regions.
* “minmax” - use the minimum/maximum of by-region P(s)
* “std” - use weighted standard deviation of P(s) curves (may produce negative results)
* “logstd” (recommended) weighted standard deviation in logspace (as seen on the plot)

	spread_funcs_slope ("minmax", "std" or a funciton) – Similar to spread_func, but for slopes rather than P(s)

	concat_original (bool (default = False)) – Append original dataframe, and put combined under region “combined”

	Returns

	scal, slope_df

Notes

This function does not calculate errorbars. The spread is not the deviation of the mean,
and rather is representative of variability between chromosomes.

Calculating errorbars/spread

	Take all by-region P(s)

	For “minmax”, remove the last var_drop_last_bins bins for each region
(by default two. They are most noisy and would inflate the
spread for the last points). Min/max are most susceptible to this.

	Groupby P(s) by region

	Apply spread_funcs to the pd.GroupBy object. Options are:
* minimum and maximum (“minmax”),
* weighted standard deviation (“std”),
* weighted standard deviation in logspace (“logstd”, default) or two custom functions
We do not remove the last bins for “std” / “logstd” because we are
doing weighted standard deviation. Therefore, noisy “ends” of regions
would contribute very little to this.

	Append them to the P(s) for the same bin.

As a result, by for minmax, we do not estimate spread for the last
two bins. This is because there are often very few chromosomal arms there,
and different arm measurements are noisy. For other methods, we do
estimate the spread there, and noisy last bins are taken care of by the
weighted standard deviation. However, the spread in the last bins may be
noisy, and may become a 0 if only one region is contributing to the last
pixel.

	
cooltools.api.expected.count_all_pixels_per_block(x, y)

	Calculate total number of pixels in a rectangular block

	Parameters

	
	x (int) – block width in pixels

	y (int) – block height in pixels

	Returns

	number_of_pixels (int) – total number of pixels in a block

	
cooltools.api.expected.count_all_pixels_per_diag(n)

	Total number of pixels on each upper diagonal of a square matrix.

	Parameters

	n (int) – total number of bins (dimension of square matrix)

	Returns

	dcount (1D array of length n) – dcount[d] == total number of pixels on diagonal d

	
cooltools.api.expected.count_bad_pixels_per_block(x, y, bad_bins_x, bad_bins_y)

	Calculate number of “bad” pixels per rectangular block of a contact map

	Parameters

	
	x (int) – block width in pixels

	y (int) – block height in pixels

	bad_bins_x (int) – number of bad bins on x-side

	bad_bins_y (int) – number of bad bins on y-side

	Returns

	number_of_pixes (int) – number of “bad” pixels in a block

	
cooltools.api.expected.count_bad_pixels_per_diag(n, bad_bins)

	Efficiently count the number of bad pixels on each upper diagonal of a
matrix assuming a sequence of bad bins forms a “grid” of invalid pixels.

Each bad bin bifurcates into two a row and column of bad pixels, so an
upper bound on number of bad pixels per diagonal is 2*k, where k is the
number of bad bins. For a given diagonal, we need to subtract from this
upper estimate the contribution from rows/columns reaching “out-of-bounds”
and the contribution of the intersection points of bad rows with bad
columns that get double counted.

o : bad bin
* : bad pixel
x : intersection bad pixel
$: out of bounds bad pixel
 $ $ $
 *--------------------------+
 * * * * |
 * * * * |
 ** * * |
 o****x*****x***********|$
 * * * |
 * * * |
 * * * |
 o******x***********|$
 * * |
 * * |
 * * |
 * * |
 * * |
 ** |
 o***********|$
 * |
 * |

	Parameters

	
	n (int) – total number of bins

	bad_bins (1D array of int) – sorted array of bad bin indexes

	Returns

	dcount (1D array of length n) – dcount[d] == number of bad pixels on diagonal d

	
cooltools.api.expected.diagsum_from_array(A, counts=None, *, offset=0, ignore_diags=2, filter_counts=False, region_name=None)

	Calculates Open2C-formatted expected for a dense submatrix of a whole
genome contact map.

	Parameters

	
	A (2D array) – Normalized submatrix to calculate expected (balanced.sum).

	counts (2D array or None, optional) – Corresponding raw contacts to populate count.sum.

	offset (int or (int, int)) – i- and j- bin offsets of A relative to the parent matrix. If a single
offset is provided it is applied to both axes.

	ignore_diags (int, optional) – Number of initial diagonals to ignore.

	filter_counts (bool, optional) – Apply the validity mask from balanced matrix to the raw one. Ignored
when counts is None.

	region_name (str or (str, str), optional) – A custom region name or pair of region names. If provided, region
columns will be included in the output.

Notes

For regions that cross the main diagonal of the whole-genome contact map,
the lower triangle “overhang” is ignored.

Examples

>>> A = clr.matrix()[:, :] # whole genome balanced
>>> C = clr.matrix(balance=False)[:, :] # whole genome raw

Using only balanced data:
>>> exp = diagsum_from_array(A)

Using balanced and raw counts:
>>> exp1 = diagsum_from_array(A, C)

Using an off-diagonal submatrix
>>> exp2 = diagsum_from_array(A[:50, 50:], offset=(0, 50))

	
cooltools.api.expected.diagsum_pairwise(clr, view_df, transforms={}, clr_weight_name='weight', ignore_diags=2, chunksize=10000000, map=<class 'map'>)

	Intra-chromosomal diagonal summary statistics for asymmetric blocks of
contact matrix defined as pairwise combinations of regions in “view_df.

Note

This is a special case of asymmetric diagonal summary statistic that is
efficient and covers the most important practical case of inter-chromosomal
arms “expected” calculation.

	Parameters

	
	clr (cooler.Cooler) – Cooler object

	view_df (viewframe) – view_df of regions for intra-chromosomal diagonal summation, has to
be sorted according to the order of chromosomes in cooler.

	transforms (dict of str -> callable, optional) – Transformations to apply to pixels. The result will be assigned to
a temporary column with the name given by the key. Callables take
one argument: the current chunk of the (annotated) pixel dataframe.

	clr_weight_name (str) – name of the balancing weight vector used to count “bad”
pixels per diagonal. Set to None not to mask
“bad” pixels (raw data only).

	chunksize (int, optional) – Size of pixel table chunks to process

	map (callable, optional) – Map functor implementation.

	Returns

	
	Dataframe of diagonal statistics for all intra-chromosomal blocks defined as

	pairwise combinations of regions in the view

	
cooltools.api.expected.diagsum_symm(clr, view_df, transforms={}, clr_weight_name='weight', ignore_diags=2, chunksize=10000000, map=<class 'map'>)

	Intra-chromosomal diagonal summary statistics.

	Parameters

	
	clr (cooler.Cooler) – Cooler object

	view_df (viewframe) – view_dfof regions for intra-chromosomal diagonal summation

	transforms (dict of str -> callable, optional) – Transformations to apply to pixels. The result will be assigned to
a temporary column with the name given by the key. Callables take
one argument: the current chunk of the (annotated) pixel dataframe.

	clr_weight_name (str) – name of the balancing weight vector used to count “bad”
pixels per diagonal. Set to None not to mask
“bad” pixels (raw data only).

	chunksize (int, optional) – Size of pixel table chunks to process

	ignore_diags (int, optional) – Number of intial diagonals to exclude from statistics

	map (callable, optional) – Map functor implementation.

	Returns

	Dataframe of diagonal statistics for all regions in the view

	
cooltools.api.expected.expected_cis(clr, view_df=None, intra_only=True, smooth=True, aggregate_smoothed=True, smooth_sigma=0.1, clr_weight_name='weight', ignore_diags=2, chunksize=10000000, nproc=1, map_functor=<class 'map'>)

	Calculate average interaction frequencies as a function of genomic
separation between pixels i.e. interaction decay with distance.
Genomic separation aka “dist” is measured in the number of bins,
and defined as an index of a diagonal on which pixels reside (bin1_id - bin2_id).

Average values are reported in the columns with names {}.avg, and they
are calculated as a ratio between a corresponding sum {}.sum and the
total number of “valid” pixels on the diagonal “n_valid”.

When balancing weights (clr_weight_name=None) are not applied to the data, there is no
masking of bad bins performed.

	Parameters

	
	clr (cooler.Cooler) – Cooler object

	view_df (viewframe) – a collection of genomic intervals where expected is calculated
otherwise expected is calculated for full chromosomes.
view_df has to be sorted, when inter-regions expected is requested,
i.e. intra_only is False.

	intra_only (bool) – Return expected only for symmetric intra-regions defined by view_df,
i.e. chromosomes, chromosomal-arms, intra-domains, etc.
When False returns expected both for symmetric intra-regions and
assymetric inter-regions.

	smooth (bool) – Apply smoothing to cis-expected. Will be stored in an additional column

	aggregate_smoothed (bool) – When smoothing, average over all regions, ignored without smoothing.

	smooth_sigma (float) – Control smoothing with the standard deviation of the smoothing Gaussian kernel.
Ignored without smoothing.

	clr_weight_name (str or None) – Name of balancing weight column from the cooler to use.
Use raw unbalanced data, when None.

	ignore_diags (int, optional) – Number of intial diagonals to exclude results

	chunksize (int, optional) – Size of pixel table chunks to process

	nproc (int, optional) – How many processes to use for calculation. Ignored if map_functor is passed.

	map_functor (callable, optional) – Map function to dispatch the matrix chunks to workers.
If left unspecified, pool_decorator applies the following defaults: if nproc>1 this defaults to multiprocess.Pool;
If nproc=1 this defaults the builtin map.

	Returns

	
	DataFrame with summary statistic of every diagonal of every symmetric

	or asymmetric block

Notes

When clr_weight_name=None, smooth=False, aggregate_smoothed=False, the minimum output DataFrame includes the following quantities (columns):

	dist:
	Distance in bins.

	dist_bp:
	Distance in basepairs.

	contact_freq:
	The “most processed” contact frequency value. For example, if balanced & smoothing then this will return the balanced.avg.smooth.agg;
if aggregated+smoothed, then balanced.avg.smooth.agg; if nothing then count.avg.

	n_total:
	Number of total pixels at a given distance.

	n_valid:
	Number of valid pixels (with non-NaN values after balancing) at a given distance.

	count.sum:
	Sum up raw contact counts of all pixels at a given distance.

	count.avg:
	The average raw contact count of pixels at a given distance. count.sum / n_total.

When clr_weigh_name is provided (by default, clr_weigh_name=”weight”), the following quantities (columns) will be added into the DataFrame:

	balanced.sum:
	Sum up balanced contact values of valid pixels at a given distance. Returned if clr_weight_name is not None.

	balanced.avg:
	The average balanced contact values of valid pixels at a given distance. balanced.sum / n_valid. Returned if clr_weight_name is not None.

When smooth=True, the following quantities (columns) will be added into the DataFrame:

	count.avg.smoothed:
	Log-smoothed count.avg. Returned if smooth=True and clr_weight_name=None.

	balanced.avg.smoothed:
	Log-smoothed balanced.avg. Returned if smooth=True and clr_weight_name is not None.

	When aggregate_smoothed=True, the following quantities (columns) will be added into the DataFrame:
	
	count.avg.smoothed.agg:
	Aggregate Log-smoothed count.avg of all genome regions. Returned if smooth=True and aggregate_smoothed=True and clr_weight_name=None.

	balanced.avg.smoothed.agg:
	Aggregate Log-smoothed balanced.avg of all genome regions. Returned if smooth=True and aggregate_smoothed=True and clr_weight_name is not None.

By default, clr_weight_name=”weight”, smooth=True, aggregate_smoothed=True, the output DataFrame includes all quantities (columns).

	
cooltools.api.expected.expected_trans(clr, view_df=None, clr_weight_name='weight', chunksize=10000000, nproc=1, map_functor=<class 'map'>)

	Calculate average interaction frequencies for inter-chromosomal
blocks defined as pairwise combinations of regions in view_df.

An expected level of interactions between disjoint chromosomes
is calculated as a simple average, as there is no notion of genomic
separation for a pair of chromosomes and contact matrix for these
regions looks “flat”.

Average values are reported in the columns with names {}.avg, and they
are calculated as a ratio between a corresponding sum {}.sum and the
total number of “valid” pixels on the diagonal “n_valid”.

	Parameters

	
	clr (cooler.Cooler) – Cooler object

	view_df (viewframe) – a collection of genomic intervals where expected is calculated
otherwise expected is calculated for full chromosomes, has to be sorted.

	clr_weight_name (str or None) – Name of balancing weight column from the cooler to use.
Use raw unbalanced data, when None.

	chunksize (int, optional) – Size of pixel table chunks to process

	nproc (int, optional) – How many processes to use for calculation. Ignored if map_functor is passed.

	map_functor (callable, optional) – Map function to dispatch the matrix chunks to workers.
If left unspecified, pool_decorator applies the following defaults: if nproc>1 this defaults to multiprocess.Pool;
If nproc=1 this defaults the builtin map.

	Returns

	
	DataFrame with summary statistic for every trans-blocks

	region1, region2, n_valid, count.sum count.avg, etc

	
cooltools.api.expected.genomewide_smooth_cvd(cvd, sigma_log10=0.1, window_sigma=5, points_per_sigma=10, cols=None, suffix='.smoothed')

	Smooth the contact-vs-distance curve aggregated across all regions in log-space.

	Parameters

	
	cvd (pandas.DataFrame) – A dataframe with the expected values in the cooltools.expected format.

	sigma_log10 (float, optional) – The standard deviation of the smoothing Gaussian kernel, applied over log10(diagonal), by default 0.1

	window_sigma (int, optional) – Width of the smoothing window, expressed in sigmas, by default 5

	points_per_sigma (int, optional) – If provided, smoothing is done only for points_per_sigma points per sigma and the
rest of the values are interpolated (this results in a major speed-up). By default 10

	cols (dict, optional) – If provided, use the specified column names instead of the standard ones.
See DEFAULT_CVD_COLS variable for the format of this argument.

	suffix (string, optional) – If provided, use the specified string as the suffix of the output column’s name

	Returns

	cvd (pandas.DataFrame) – A cvd table with extra column for the log-smoothed contact frequencies (by default, “balanced.avg.smoothed.agg” if balanced, or “count.avg.smoothed.agg” if raw).

Notes

Parameters in “cols” will be used:

	dist:
	Name of the column that stores distance values (by default, “dist”).

	n_pixels:
	Name of the column that stores number of pixels (by default, “n_valid” if balanced, or “n_total” if raw).

	n_contacts:
	Name of the column that stores the sum of contacts (by default, “balanced.sum” if balanced, or “count.sum” if raw).

	output_prefix:
	Name prefix of the column that will store output value (by default, “balanced.avg” if balanced, or “count.avg” if raw).

	
cooltools.api.expected.interpolate_expected(expected, binned_expected, columns=['balanced.avg'], kind='quadratic', by_region=True, extrapolate_small_s=False)

	Interpolates expected to match binned_expected.
Basically, this function smoothes the original expected according to the logbinned expected.
It could either use by-region expected (each region will have different expected)
or use combined binned_expected (all regions will have the same expected after that)

Such a smoothed expected should be used to calculate observed/expected for downstream analysis.

	Parameters

	
	expected (pd.DataFrame) – expected as returned by diagsum_symm

	binned_expected (pd.DataFrame) – binned expected (combined or not)

	columns (list[str] (optional)) – Columns to interpolate. Must be present in binned_expected,
but not necessarily in expected.

	kind (str (optional)) – Interpolation type, according to scipy.interpolate.interp1d

	by_region (bool or str (optional)) – Whether to do interpolation by-region (default=True).
False means use one expected for all regions (use entire table).
If a region name is provided, expected for that region is used.

	
cooltools.api.expected.lattice_pdist_frequencies(n, points)

	Distribution of pairwise 1D distances among a collection of distinct
integers ranging from 0 to n-1.

	Parameters

	
	n (int) – Size of the lattice on which the integer points reside.

	points (sequence of int) – Arbitrary integers between 0 and n-1, inclusive, in any order but
with no duplicates.

	Returns

	h (1D array of length n) – h[d] counts the number of integer pairs that are exactly d units apart

Notes

This is done using a convolution via FFT. Thanks to Peter de Rivaz; see
http://stackoverflow.com/questions/42423823/distribution-of-pairwise-distances-between-many-integers.

	
cooltools.api.expected.logbin_expected(exp, summary_name='balanced.sum', bins_per_order_magnitude=10, bin_layout='fixed', smooth=<function <lambda>>, min_nvalid=200, min_count=50)

	Logarithmically bins expected as produced by diagsum_symm method.

	Parameters

	
	exp (DataFrame) – DataFrame produced by diagsum_symm

	summary_name (str, optional) – Name of the column of exp-DataFrame to use as a diagonal summary.
Default is “balanced.sum”.

	bins_per_order_magnitude (int, optional) – How many bins per order of magnitude. Default of 10 has a ratio of
neighboring bins of about 1.25

	bin_layout ("fixed", "longest_region", or array) – “fixed” means that bins are exactly the same for different datasets,
and only depend on bins_per_order_magnitude

”longest_region” means that the last bin will end at size of the
longest region.

GOOD: the last bin will have as much data as possible.
BAD: bin edges will end up different for different datasets, you
can’t divide them by each other

array: provide your own bin edges. Can be of any size, and end at any
value. Bins exceeding the size of the largest region will be simply
ignored.

	smooth (callable) – A smoothing function to be applied to log(P(s)) and log(x)
before calculating P(s) slopes for by-region data

	min_nvalid (int) – For each region, throw out bins (log-spaced) that have less than
min_nvalid valid pixels
This will ensure that each entree in Pc_by_region has at least n_valid
valid pixels
Don’t set it to zero, or it will introduce bugs. Setting it to 1 is OK,
but not recommended.

	min_count (int) – If counts are found in the data, then for each region, throw out bins
(log-spaced)
that have more than min_counts of counts.sum (raw Hi-C counts).
This will ensure that each entree in Pc_by_region has at least
min_count raw Hi-C reads

	Returns

	
	Pc (DataFrame) – dataframe of contact probabilities and spread across regions

	slope (ndarray) – slope of Pc(s) on a log-log plot and spread across regions

	bins (ndarray) – an array of bin edges used for calculating P(s)

Notes

For main Pc and slope, the algorithm is the following

	concatenate all the expected for all regions into a large dataframe.

	create logarithmically-spaced bins of diagonals (or use provided)

	pool together n_valid and balanced.sum for each region and for each bin

	calculate the average diagonal for each bucket, weighted by n_valid

	divide balanced.sum by n_valid after summing for each bucket (not before)

	calculate the slope in log space (for each region)

X values are not midpoints of bins

In step 4, we calculate the average diag index weighted by n_valid. This
seems counter-intuitive, but it actually is justified.

Let’s take the worst case scenario. Let there be a bin from 40MB to 44MB.
Let there be a region that is exactly 41 MB long. The midpoint of the bin
is at 42MB. But the only part of this region belonging to this bin is
actually between 40MB and 41MB. Moreover, the “average” read in this
little triangle of the heatmap is actually not coming even from 40.5 MB
because the triangle is getting narrower towards 41MB. The center of mass
of a triangle is 1/3 of the way up, or 40.33 MB. So an average read for
this region in this bin is coming from 40.33.

Consider the previous bin, say, from 36MB to 40MB. The heatmap there is a
trapezoid with a long side of 5MB, the short side of 1MB, and height of
4MB. The center of mass of this trapezoid is at 36 + 14/9 = 37.55MB,
and not at 38MB. So the last bin center is definitely mis-assigned, and
the second-to-last bin center is off by some 25%. This would lead to a 25%
error of the P(s) slope estimated between the third-to-last and
second-to-last bin.

In presence of missing bins, this all becomes more complex, but this kind
of averaging should take care of everything. It follows a general
principle: when averaging the y values with some weights, one needs to
average the x values with the same weights. The y values here are being
added together, so per-diag means are effectively averaged with the weight
of n_valid. Therefore, the x values (diag) should be averaged with the
same weights.

Other considerations

Steps #3 and #5 are important because the ratio of sums does not equal to
the sum of ratios, and the former is more correct (the latter is more
susceptible to noise). It is generally better to divide at the very end,
rather than dividing things for each diagonal.

Here we divide at the end twice: first we divide balanced.sum by n_valid
for each region, then we effectively multiply it back up and divide it for
each bin when combining different regions (see weighted average in the
next function).

Smoothing P(s) for the slope

For calcuating the slope, we apply smoothing to the P(s) to ensure the
slope is not too noisy. There are several caveats here: the P(s) has to
be smoothed in logspace, and both P and s have to be smoothed. It is
discussed in detail here

https://gist.github.com/mimakaev/4becf1310ba6ee07f6b91e511c531e73

Examples

For example, see this gist: https://gist.github.com/mimakaev/e9117a7fcc318e7904702eba5b47d9e6

	
cooltools.api.expected.make_block_table(clr, regions1, regions2, clr_weight_name='weight')

	Creates a table of total and valid pixels for a set of rectangular genomic blocks
defined by regions1 and regions2.
For every block calculate its “area” in pixels (“n_total”), and calculate
number of “valid” pixels (“n_valid”).
Valid pixels exclude “bad” pixels, which are inferred from the balancing
weight column clr_weight_name.

When clr_weight_name is None, raw data is used, and no “bad” pixels are exclued.

	Parameters

	
	clr (cooler.Cooler) – Input cooler

	regions1 (viewframe-like dataframe) – viewframe-like dataframe, where repeated entries are allowed

	regions2 (viewframe-like dataframe) – viewframe-like dataframe, where repeated entries are allowed

	clr_weight_name (str) – name of the weight column in the cooler bins-table, used
for masking bad pixels.
When clr_weight_name is None, no bad pixels are masked.

	Returns

	block_table (dict) – dictionary for blocks that are 0-indexed

	
cooltools.api.expected.make_diag_table(bad_mask, span1, span2)

	Compute the total number of elements n_total and the number of bad
elements n_bad per diagonal for a single contact area encompassing
span1 and span2 on the same genomic scaffold (cis matrix).

Follows the same principle as the algorithm for finding contact areas for
computing scalings.

	Parameters

	
	bad_mask (1D array of bool) – Mask of bad bins for the whole genomic scaffold containing the regions
of interest.

	span1 (pair of ints) – The bin spans (not genomic coordinates) of the two regions of interest.

	span2 (pair of ints) – The bin spans (not genomic coordinates) of the two regions of interest.

	Returns

	diags (pandas.DataFrame) – Table indexed by ‘diag’ with columns [‘n_total’, ‘n_bad’].

	
cooltools.api.expected.make_diag_tables(clr, regions, regions2=None, clr_weight_name='weight')

	For every region infer diagonals that intersect this region and calculate
the size of these intersections in pixels, both “total” and “n_valid”,
where “n_valid” does not count “bad” pixels.

“Bad” pixels are inferred from the balancing weight column clr_weight_name.
When clr_weight_name is None, raw data is used, and no “bad” pixels are exclued.

When regions2 are provided, all intersecting diagonals are reported for
each rectangular and asymmetric block defined by combinations of matching
elements of regions and regions2.
Otherwise only regions-based symmetric square blocks are considered.
Only intra-chromosomal regions are supported.

	Parameters

	
	clr (cooler.Cooler) – Input cooler

	regions (viewframe or viewframe-like dataframe) – viewframe without repeated entries or viewframe-like dataframe with repeated entries

	regions2 (viewframe or viewframe-like dataframe) – viewframe without repeated entries or viewframe-like dataframe with repeated entries

	clr_weight_name (str) – name of the weight column in the clr bin-table,
Balancing weight is used to infer bad bins, set to
None is masking bad bins is not desired for raw data.

	Returns

	diag_tables (dict) – dictionary with DataFrames of relevant diagonals for every region.

	
cooltools.api.expected.per_region_smooth_cvd(cvd, sigma_log10=0.1, window_sigma=5, points_per_sigma=10, cols=None, suffix='')

	Smooth the contact-vs-distance curve for each region in log-space.

	Parameters

	
	cvd (pandas.DataFrame) – A dataframe with the expected values in the cooltools.expected format.

	sigma_log10 (float, optional) – The standard deviation of the smoothing Gaussian kernel, applied over log10(diagonal), by default 0.1

	window_sigma (int, optional) – Width of the smoothing window, expressed in sigmas, by default 5

	points_per_sigma (int, optional) – If provided, smoothing is done only for points_per_sigma points per sigma and the
rest of the values are interpolated (this results in a major speed-up). By default 10

	cols (dict, optional) – If provided, use the specified column names instead of the standard ones.
See DEFAULT_CVD_COLS variable for the format of this argument.

	suffix (string, optional) – If provided, use the specified string as the suffix of the output column’s name

	Returns

	cvd (pandas.DataFrame) – A cvd table with extra column for the log-smoothed contact frequencies (by default, “balanced.avg.smoothed” if balanced, or “count.avg.smoothed” if raw).

Notes

Parameters in “cols” will be used:

	region1:
	Name of the column that stores region1’s locations (by default, “region1”).

	region2:
	Name of the column that stores region2’s locations (by default, “region2”).

	dist:
	Name of the column that stores distance values (by default, “dist”).

	n_pixels:
	Name of the column that stores number of pixels (by default, “n_valid” if balanced, or “n_total” if raw).

	n_contacts:
	Name of the column that stores the sum of contacts (by default, “balanced.sum” if balanced, or “count.sum” if raw).

	output_prefix:
	Name prefix of the column that will store output value (by default, “balanced.avg” if balanced, or “count.avg” if raw).

cooltools.api.insulation module

	
cooltools.api.insulation.calculate_insulation_score(clr, window_bp, view_df=None, ignore_diags=None, min_dist_bad_bin=0, is_bad_bin_key='is_bad_bin', append_raw_scores=False, chunksize=20000000, clr_weight_name='weight', verbose=False, nproc=1, map_functor=<class 'map'>)

	Calculate the diamond insulation scores for all bins in a cooler.

	Parameters

	
	clr (cooler.Cooler) – A cooler with balanced Hi-C data.

	window_bp (int or list of integers) – The size of the sliding diamond window used to calculate the insulation
score. If a list is provided, then a insulation score if calculated for each
value of window_bp.

	view_df (bioframe.viewframe or None) – Viewframe for independent calculation of insulation scores for regions

	ignore_diags (int | None) – The number of diagonals to ignore. If None, equals the number of
diagonals ignored during IC balancing.

	min_dist_bad_bin (int) – The minimal allowed distance to a bad bin to report insulation score.
Fills bins that have a bad bin closer than this distance by nans.

	is_bad_bin_key (str) – Name of the output column to store bad bins

	append_raw_scores (bool) – If True, append columns with raw scores (sum_counts, sum_balanced, n_pixels)
to the output table.

	clr_weight_name (str or None) – Name of the column in the bin table with weight.
Using unbalanced data with None will avoid masking “bad” pixels.

	verbose (bool) – If True, report real-time progress.

	nproc (int, optional) – How many processes to use for calculation. Ignored if map_functor is passed.

	map_functor (callable, optional) – Map function to dispatch the matrix chunks to workers.
If left unspecified, pool_decorator applies the following defaults: if nproc>1 this defaults to multiprocess.Pool;
If nproc=1 this defaults the builtin map.

	Returns

	ins_table (pandas.DataFrame) – A table containing the insulation scores of the genomic bins

	
cooltools.api.insulation.find_boundaries(ins_table, min_frac_valid_pixels=0.66, min_dist_bad_bin=0, log2_ins_key='log2_insulation_score_{WINDOW}', n_valid_pixels_key='n_valid_pixels_{WINDOW}', is_bad_bin_key='is_bad_bin')

	Call insulating boundaries.

Find all local minima of the log2(insulation score) and calculate their
chromosome-wide topographic prominence.

	Parameters

	
	ins_table (pandas.DataFrame) – A bin table with columns containing log2(insulation score),
annotation of regions (required),
the number of valid pixels per diamond and (optionally) the mask
of bad bins. Normally, this should be an output of calculate_insulation_score.

	view_df (bioframe.viewframe or None) – Viewframe for independent boundary calls for regions

	min_frac_valid_pixels (float) – The minimal fraction of valid pixels in a diamond to be used in
boundary picking and prominence calculation.

	min_dist_bad_bin (int) – The minimal allowed distance to a bad bin to be used in boundary picking.
Ignore bins that have a bad bin closer than this distance.

	log2_ins_key (str) – The names of the columns containing log2_insulation_score and
the number of valid pixels per diamond. When a template
containing {WINDOW} is provided, the calculation is repeated
for all pairs of columns matching the template.

	n_valid_pixels_key (str) – The names of the columns containing log2_insulation_score and
the number of valid pixels per diamond. When a template
containing {WINDOW} is provided, the calculation is repeated
for all pairs of columns matching the template.

	Returns

	ins_table (pandas.DataFrame) – A bin table with appended columns with boundary prominences.

	
cooltools.api.insulation.get_n_pixels(bad_bin_mask, window=10, ignore_diags=2)

	Calculate the number of “good” pixels in a diamond at each bin.

	
cooltools.api.insulation.insul_diamond(pixel_query, bins, window=10, ignore_diags=2, norm_by_median=True, clr_weight_name='weight')

	Calculates the insulation score of a Hi-C interaction matrix.

	Parameters

	
	pixel_query (RangeQuery object <TODO:update description>) – A table of Hi-C interactions. Must follow the Cooler columnar format:
bin1_id, bin2_id, count, balanced (optional)).

	bins (pandas.DataFrame) – A table of bins, is used to determine the span of the matrix
and the locations of bad bins.

	window (int) – The width (in bins) of the diamond window to calculate the insulation
score.

	ignore_diags (int) – If > 0, the interactions at separations < ignore_diags are ignored
when calculating the insulation score. Typically, a few first diagonals
of the Hi-C map should be ignored due to contamination with Hi-C
artifacts.

	norm_by_median (bool) – If True, normalize the insulation score by its NaN-median.

	clr_weight_name (str or None) – Name of balancing weight column from the cooler to use.
Using raw unbalanced data is not supported for insulation.

	
cooltools.api.insulation.insulation(clr, window_bp, view_df=None, ignore_diags=None, clr_weight_name='weight', min_frac_valid_pixels=0.66, min_dist_bad_bin=0, threshold='Li', append_raw_scores=False, chunksize=20000000, verbose=False, nproc=1)

	Find insulating boundaries in a contact map via the diamond insulation score.

For a given cooler, this function (a) calculates the diamond insulation score track,
(b) detects all insulating boundaries, and (c) removes weak boundaries via an automated
thresholding algorithm.

	Parameters

	
	clr (cooler.Cooler) – A cooler with balanced Hi-C data.

	window_bp (int or list of integers) – The size of the sliding diamond window used to calculate the insulation
score. If a list is provided, then a insulation score if done for each
value of window_bp.

	view_df (bioframe.viewframe or None) – Viewframe for independent calculation of insulation scores for regions

	ignore_diags (int | None) – The number of diagonals to ignore. If None, equals the number of
diagonals ignored during IC balancing.

	clr_weight_name (str) – Name of the column in the bin table with weight

	min_frac_valid_pixels (float) – The minimal fraction of valid pixels in a diamond to be used in
boundary picking and prominence calculation.

	min_dist_bad_bin (int) – The minimal allowed distance to a bad bin to report insulation score.
Fills bins that have a bad bin closer than this distance by nans.

	threshold ("Li", "Otsu" or float) – Rule used to threshold the histogram of boundary strengths to exclude weak
boundaries. “Li” or “Otsu” use corresponding methods from skimage.thresholding.
Providing a float value will filter by a fixed threshold

	append_raw_scores (bool) – If True, append columns with raw scores (sum_counts, sum_balanced, n_pixels)
to the output table.

	verbose (bool) – If True, report real-time progress.

	nproc (int, optional) – How many processes to use for calculation

	Returns

	ins_table (pandas.DataFrame) – A table containing the insulation scores of the genomic bins

cooltools.api.saddle module

	
cooltools.api.saddle.digitize(track, n_bins, vrange=None, qrange=None, digitized_suffix='.d')

	Digitize genomic signal tracks into integers between 1 and n.

	Parameters

	
	track (4-column DataFrame) – bedGraph-like dataframe with columns understood as (chrom,start,end,value).

	n_bins (int) – number of bins for signal quantization.

	vrange (tuple) – Low and high values used for binning track values.
E.g. if `vrange`=(-0.05, 0.05), equal width bins would be generated
between the value -0.05 and 0.05.

	qrange (tuple) – Low and high values for quantile binning track values.
E.g., if `qrange`=(0.02, 0.98) the lower bin would
start at the 2nd percentile and the upper bin would end at the 98th
percentile of the track value range.
Low must be 0.0 or more, high must be 1.0 or less.

	digitized_suffix (str) – suffix to append to the track value name in the fourth column.

	Returns

	
	digitized (DataFrame) – New track dataframe (bedGraph-like) with
digitized value column with name suffixed by ‘.d’
The digized column is returned as a categorical.

	binedges (1D array (length n + 1)) – Bin edges used in quantization of track. For n bins, there are n + 1
edges. See encoding details in Notes.

Notes

The digital encoding is as follows:

	1..n <-> values assigned to bins defined by vrange or qrange

	0 <-> left outlier values

	n+1 <-> right outlier values

	-1 <-> missing data (NaNs)

	
cooltools.api.saddle.saddle(clr, expected, track, contact_type, n_bins, vrange=None, qrange=None, view_df=None, clr_weight_name='weight', expected_value_col='balanced.avg', view_name_col='name', min_diag=3, max_diag=-1, trim_outliers=False, verbose=False, drop_track_na=False)

	Get a matrix of average interactions between genomic bin
pairs as a function of a specified genomic track.

The provided genomic track is either:
(a) digitized inside this function by passing ‘n_bins’, and one of ‘v_range’ or ‘q_range’
(b) passed as a pre-digitized track with a categorical value column as generated by get_digitized().

	Parameters

	
	clr (cooler.Cooler) – Observed matrix.

	expected (DataFrame in expected format) – Diagonal summary statistics for each chromosome, and name of the column
with the values of expected to use.

	contact_type (str) – If ‘cis’ then only cis interactions are used to build the matrix.
If ‘trans’, only trans interactions are used.

	track (DataFrame) – A track, i.e. BedGraph-like dataframe, which is digitized with
the options n_bins, vrange and qrange. Can optionally be passed
as a pre-digitized dataFrame with a categorical value column,
as generated by get_digitzied(), also passing n_bins as None.

	n_bins (int or None) – number of bins for signal quantization. If None, then track must
be passed as a pre-digitized track.

	vrange (tuple) – Low and high values used for binning track values.
See get_digitized().

	qrange (tuple) – Low and high values for quantile binning track values.
Low must be 0.0 or more, high must be 1.0 or less.
Only one of vrange or qrange can be passed. See get_digitzed().

	view_df (viewframe) – Viewframe with genomic regions. If none, generate from track chromosomes.

	clr_weight_name (str) – Name of the column in the clr.bins to use as balancing weights.
Using raw unbalanced data is not supported for saddles.

	expected_value_col (str) – Name of the column in expected used for normalizing.

	view_name_col (str) – Name of column in view_df with region names.

	min_diag (int) – Smallest diagonal to include in computation. Ignored with
contact_type=trans.

	max_diag (int) – Biggest diagonal to include in computation. Ignored with
contact_type=trans.

	trim_outliers (bool, optional) – Remove first and last row and column from the output matrix.

	verbose (bool, optional) – If True then reports progress.

	drop_track_na (bool, optional) – If True then drops NaNs in input track (as if they were missing),
If False then counts NaNs as present in dataframe.
In general, this only adds check form chromosomes that have all missing values, but does not affect the results.

	Returns

	
	interaction_sum (2D array) – The matrix of summed interaction probability between two genomic bins
given their values of the provided genomic track.

	interaction_count (2D array) – The matrix of the number of genomic bin pairs that contributed to the
corresponding pixel of interaction_sum.

	
cooltools.api.saddle.saddle_strength(S, C)

	
	Parameters

	
	S (2D arrays, square, same shape) – Saddle sums and counts, respectively

	C (2D arrays, square, same shape) – Saddle sums and counts, respectively

	Returns

	
	1D array

	Ratios of cumulative corner interaction scores, where the saddle data is

	grouped over the AA+BB corners and AB+BA corners with increasing extent.

	
cooltools.api.saddle.saddleplot(track, saddledata, n_bins, vrange=None, qrange=(0.0, 1.0), cmap='coolwarm', scale='log', vmin=0.5, vmax=2, color=None, title=None, xlabel=None, ylabel=None, clabel=None, fig=None, fig_kws=None, heatmap_kws=None, margin_kws=None, cbar_kws=None, subplot_spec=None)

	Generate a saddle plot.

	Parameters

	
	track (pd.DataFrame) – See get_digitized() for details.

	saddledata (2D array-like) – Saddle matrix produced by make_saddle. It will include 2 flanking
rows/columns for outlier signal values, thus the shape should be
(n+2, n+2).

	cmap (str or matplotlib colormap) – Colormap to use for plotting the saddle heatmap

	scale (str) – Color scaling to use for plotting the saddle heatmap: log or linear

	vmin (float) – Value limits for coloring the saddle heatmap

	vmax (float) – Value limits for coloring the saddle heatmap

	color (matplotlib color value) – Face color for margin bar plots

	fig (matplotlib Figure, optional) – Specified figure to plot on. A new figure is created if none is
provided.

	fig_kws (dict, optional) – Passed on to plt.Figure()

	heatmap_kws (dict, optional) – Passed on to ax.imshow()

	margin_kws (dict, optional) – Passed on to ax.bar() and ax.barh()

	cbar_kws (dict, optional) – Passed on to plt.colorbar()

	subplot_spec (GridSpec object) – Specify a subregion of a figure to using a GridSpec.

	Returns

	Dictionary of axes objects.

cooltools.api.sample module

	
cooltools.api.sample.sample(clr, out_clr_path, count=None, cis_count=None, frac=None, exact=False, chunksize=10000000, nproc=1, map_functor=<class 'map'>)

	Pick a random subset of contacts from a Hi-C map.

	Parameters

	
	clr (cooler.Cooler or str) – A Cooler or a path/URI to a Cooler with input data.

	out_clr_path (str) – A path/URI to the output.

	count (int) – The target number of contacts in the sample.
Mutually exclusive with cis_count and frac.

	cis_count (int) – The target number of cis contacts in the sample.
Mutually exclusive with count and frac.

	frac (float) – The target sample size as a fraction of contacts in the original
dataset. Mutually exclusive with count and cis_count.

	exact (bool) – If True, the resulting sample size will exactly match the target value.
Exact sampling will load the whole pixel table into memory!
If False, binomial sampling will be used instead and the sample size
will be randomly distributed around the target value.

	chunksize (int) – The number of pixels loaded and processed per step of computation.

	nproc (int, optional) – How many processes to use for calculation. Ignored if map_functor is passed.

	map_functor (callable, optional) – Map function to dispatch the matrix chunks to workers.
If left unspecified, pool_decorator applies the following defaults: if nproc>1 this defaults to multiprocess.Pool;
If nproc=1 this defaults the builtin map.

	
cooltools.api.sample.sample_pixels_approx(pixels, frac)

	

	
cooltools.api.sample.sample_pixels_exact(pixels, count)

	

cooltools.api.snipping module

Collection of classes and functions used for snipping and creation of pileups
(averaging of multiple small 2D regions)
The main user-facing function of this module is pileup, it performs pileups using
snippers and other functions defined in the module. The concept is the following:

	First, the provided features are annotated with the regions from a view (or simply
whole chromosomes, if no view is provided). They are assigned to the region that
contains it, or the one with the largest overlap.

	Then the features are expanded using the flank argument, and aligned to the bins
of the cooler

	Depending on the requested operation (whether the normalization to expected is
required), the appropriate snipper object is created

	A snipper can select a particular region of a genome-wide matrix, meaning it
stores its sparse representation in memory. This could be whole chromosomes or
chromosome arms, for example

	A snipper can snip a small area of a selected region, meaning it will extract
and return a dense representation of this area

	For each region present, it is first `select`ed, and then all features within it are
`snip`ped, creating a stack: a 3D array containing all snippets for this region

	For features that are not assigned to any region, an empty snippet is returned

	All per-region stacks are then combined into one, which then can be averaged to create
a single pileup

	The order of snippets in the stack matches the order of features, this way the stack
can also be used for analysis of any subsets of original features

This procedure achieves a good tradeoff between speed and RAM. Extracting each
individual snippet directly from disk would be extremely slow due to slow IO.
Extracting the whole chromosomes into dense matrices is not an option due to huge
memory requirements. As a warning, deeply sequenced data can still require a
substantial amount of RAM at high resolution even as a sparse matrix, but typically
it’s not a problem.

	
class cooltools.api.snipping.CoolerSnipper(clr, cooler_opts=None, view_df=None, min_diag=2)

	Bases: object

	
select(region1, region2)

	Select a portion of the cooler for snipping based on two regions in the view

In addition to returning the selected portion of the data, stores necessary
information about it in the snipper object for future snipping

	Parameters

	
	region1 (str) – Name of a region from the view

	region2 (str) – Name of another region from the view.

	Returns

	CSR matrix – Sparse matrix of the selected portion of the data from the cooler

	
snip(matrix, region1, region2, tup)

	Extract a snippet from the matrix

Returns a NaN-filled array for out-of-bounds regions. Fills in NaNs based on the
cooler weight, if using balanced data. Fills NaNs in all diagonals below min_diag

	Parameters

	
	matrix (SCR matrix) – Output of the .select() method

	region1 (str) – Name of a region from the view corresponding to the matrix

	region2 (str) – Name of the other regions from the view corresponding to the matrix

	tup (tuple) – (start1, end1, start2, end2) coordinates of the requested snippet in bp

	Returns

	np.array – Requested snippet.

	
class cooltools.api.snipping.ExpectedSnipper(clr, expected, view_df=None, min_diag=2, expected_value_col='balanced.avg')

	Bases: object

	
select(region1, region2)

	Select a portion of the expected matrix for snipping based on two regions
in the view

In addition to returning the selected portion of the data, stores necessary
information about it in the snipper object for future snipping

	Parameters

	
	region1 (str) – Name of a region from the view

	region2 (str) – Name of another region from the view.

	Returns

	CSR matrix – Sparse matrix of the selected portion of the data from the cooler

	
snip(exp, region1, region2, tup)

	Extract an expected snippet

Returns a NaN-filled array for out-of-bounds regions.
Fills NaNs in all diagonals below min_diag

	Parameters

	
	exp (SCR matrix) – Output of the .select() method

	region1 (str) – Name of a region from the view corresponding to the matrix

	region2 (str) – Name of the other regions from the view corresponding to the matrix

	tup (tuple) – (start1, end1, start2, end2) coordinates of the requested snippet in bp

	Returns

	np.array – Requested snippet.

	
class cooltools.api.snipping.ObsExpSnipper(clr, expected, cooler_opts=None, view_df=None, min_diag=2, expected_value_col='balanced.avg')

	Bases: object

	
select(region1, region2)

	Select a portion of the cooler for snipping based on two regions in the view

In addition to returning the selected portion of the data, stores necessary
information about it in the snipper object for future snipping

	Parameters

	
	region1 (str) – Name of a region from the view

	region2 (str) – Name of another region from the view.

	Returns

	CSR matrix – Sparse matrix of the selected portion of the data from the cooler

	
snip(matrix, region1, region2, tup)

	Extract an expected-normalised snippet from the matrix

Returns a NaN-filled array for out-of-bounds regions. Fills in NaNs based on the
cooler weight, if using balanced data. Fills NaNs in all diagonals below min_diag

	Parameters

	
	matrix (SCR matrix) – Output of the .select() method

	region1 (str) – Name of a region from the view corresponding to the matrix

	region2 (str) – Name of the other regions from the view corresponding to the matrix

	tup (tuple) – (start1, end1, start2, end2) coordinates of the requested snippet in bp

	Returns

	np.array – Requested snippet.

	
cooltools.api.snipping.expand_align_features(features_df, flank, resolution, format='bed')

	Short summary.

	Parameters

	
	features_df (pd.DataFrame) – Dataframe with feature coordinates.

	flank (int) – Flank size to add to the central bin of each feature.

	resolution (int) – Size of the bins to use.

	format (str) – “bed” or “bedpe” format: has to have ‘chrom’, ‘start’, ‘end’
or ‘chrom1’, ‘start1’, ‘end1’, ‘chrom2’, ‘start2’, ‘end1’ columns, repectively.

	Returns

	pd.DataFrame –

	DataFrame with features with new columns
	”center”, “orig_start” “orig_end”

	or “center1”, “orig_start1”, “orig_end1”,
	”center2”, “orig_start2”, “orig_rank_end2”, depending on format.

	
cooltools.api.snipping.make_bin_aligned_windows(binsize, chroms, centers_bp, flank_bp=0, region_start_bp=0, ignore_index=False)

	Convert genomic loci into bin spans on a fixed bin-segmentation of a
genomic region. Window limits are adjusted to align with bin edges.

	Parameters

	
	binsize (int) – Bin size (resolution) in base pairs.

	chroms (1D array-like) – Column of chromosome names.

	centers_bp (1D or nx2 array-like) – If 1D, center points of each window. If 2D, the starts and ends.

	flank_bp (int) – Distance in base pairs to extend windows on either side.

	region_start_bp (int, optional) – If region is a subset of a chromosome, shift coordinates by this amount.
Default is 0.

	Returns

	DataFrame with columns – ‘chrom’ - chromosome
‘start’, ‘end’ - window limits in base pairs
‘lo’, ‘hi’ - window limits in bins

	
cooltools.api.snipping.pileup(clr, features_df, view_df=None, expected_df=None, expected_value_col='balanced.avg', flank=100000, min_diag='auto', clr_weight_name='weight', nproc=1, map_functor=<class 'map'>)

	Pileup features over the cooler.

	Parameters

	
	clr (cooler.Cooler) – Cooler with Hi-C data

	features_df (pd.DataFrame) – Dataframe in bed or bedpe format: has to have ‘chrom’, ‘start’, ‘end’
or ‘chrom1’, ‘start1’, ‘end1’, ‘chrom2’, ‘start2’, ‘end2’ columns.

	view_df (pd.DataFrame) – Dataframe with the genomic view for this operation (has to match the
expected_df, if provided)

	expected_df (pd.DataFrame) – Dataframe with the expected level of interactions at different
genomic separations

	expected_value_col (str) – Name of the column in expected used for normalizing.

	flank (int) – How much to flank the center of the features by, in bp

	min_diag (str or int) – All diagonals of the matrix below this value are ignored. ‘auto’
tries to extract the value used during the matrix balancing,
if it fails defaults to 2

	clr_weight_name (str) – Value of the column that contains the balancing weights

	force (bool) – Allows start>end in the features (not implemented)

	nproc (int, optional) – How many processes to use for calculation. Ignored if map_functor is passed.

	map_functor (callable, optional) – Map function to dispatch the matrix chunks to workers.
If left unspecified, pool_decorator applies the following defaults: if nproc>1 this defaults to multiprocess.Pool;
If nproc=1 this defaults the builtin map.

	Returns

	
	np.ndarray (a stackup of all snippets corresponding to the features, with shape)

	(n, D, D), where n is the number of snippets and (D, D) is the shape of each

	snippet

cooltools.api.virtual4c module

	
cooltools.api.virtual4c.virtual4c(clr, viewpoint, clr_weight_name='weight', nproc=1, map_functor=<class 'map'>)

	Generate genome-wide contact profile for a given viewpoint.

Extract all contacts of a given viewpoint from a cooler file.

	Parameters

	
	clr (cooler.Cooler) – A cooler with balanced Hi-C data.

	viewpoint (tuple or str) – Coordinates of the viewpoint.

	clr_weight_name (str) – Name of the column in the bin table with weight

	nproc (int, optional) – How many processes to use for calculation. Ignored if map_functor is passed.

	map_functor (callable, optional) – Map function to dispatch the matrix chunks to workers.
If left unspecified, pool_decorator applies the following defaults: if nproc>1 this defaults to multiprocess.Pool;
If nproc=1 this defaults the builtin map.

	Returns

	v4C_table (pandas.DataFrame) – A table containing the interaction frequency of the viewpoint with the rest of
the genome

Note

Note: this is a new (experimental) function, the interface or output might change in
a future version.

 cooltools.lib package

cooltools.lib package

common

	
cooltools.lib.common.align_track_with_cooler(track, clr, view_df=None, clr_weight_name='weight', mask_clr_bad_bins=True, drop_track_na=True)

	Sync a track dataframe with a cooler bintable.

Checks that bin sizes match between a track and a cooler,
merges the cooler bintable with the track, and
propagates masked regions from a cooler bintable to a track.

	Parameters

	
	track (pd.DataFrame) – bedGraph-like track DataFrame to check

	clr (cooler) – cooler object to check against

	view_df (bioframe.viewframe or None) – Optional viewframe of regions to check for their number of bins with assigned track values.
If None, constructs a view_df from cooler chromsizes.

	clr_weight_name (str) – Name of the column in the bin table with weight

	mask_clr_bad_bins (bool) – Whether to propagate null bins from cooler bintable column clr_weight_name
to the ‘value’ column of the output clr_track. Default True.

	drop_track_na (bool) – Whether to ignore missing values in the track (as if they are absent).
Important for raising errors for unassigned regions and warnings for partial assignment.
Default True, so NaN values are treated as not assigned.
False means that NaN values are treated as assigned.

	Returns

	clr_track – track dataframe that has been aligned with the cooler bintable
and has columns [‘chrom’,’start’,’end’,’value’]

	
cooltools.lib.common.assign_regions(features, supports)

	DEPRECATED. Will be removed in the future versions and replaced with bioframe.overlap()
For each feature in features dataframe assign the genomic region (support)
that overlaps with it. In case if feature overlaps multiple supports, the
region with largest overlap will be reported.

	
cooltools.lib.common.assign_regions_to_bins(bin_ids, regions_span)

	

	
cooltools.lib.common.assign_supports(features, supports, labels=False, suffix='')

	Assign support regions to a table of genomic intervals.
Obsolete, replaced by assign_regions now.

	Parameters

	
	features (DataFrame) – Dataframe with columns chrom, start, end
or chrom1, start1, end1, chrom2, start2, end2

	supports (array-like) – Support areas

	
cooltools.lib.common.assign_view_auto(features, view_df, cols_unpaired=['chrom', 'start', 'end'], cols_paired=['chrom1', 'start1', 'end1', 'chrom2', 'start2', 'end2'], cols_view=['chrom', 'start', 'end'], features_view_col_unpaired='region', features_view_cols_paired=['region1', 'region2'], view_name_col='name', drop_unassigned=False, combined_assignments_column='region', force=True)

	Assign region names from the view to each feature

Determines whether the features are unpaired (1D, bed-like) or paired (2D,
bedpe-like) based on presence of column names (cols_unpaired vs cols_paired)
Assigns a regular 1D view, independently to each side in case of paired features.
Will add one or two columns with region names (features_view_col_unpaired or
features_view_cols_paired) respectively, in case of unpaired and paired features.

	Parameters

	
	features (pd.DataFrame) – bedpe-style dataframe

	view_df (pandas.DataFrame) – ViewFrame specifying region start and ends for assignment. Attempts to
convert dictionary and pd.Series formats to viewFrames.

	cols_unpaired (list of str) – The names of columns containing the chromosome, start and end of the
genomic intervals for unpaired features.
The default values are “chrom”, “start”, “end”.

	cols_paired (list of str) – The names of columns containing the chromosome, start and end of the
genomic intervals for paired features.
The default values are “chrom1”, “start1”, “end1”, “chrom2”, “start2”, “end2”.

	cols_view (list of str) – The names of columns containing the chromosome, start and end of the
genomic intervals in the view. The default values are “chrom”, “start”, “end”.

	features_view_col_unpaired (str) – Name of the column where to save the assigned region name for unpaired features

	features_view_cols_paired (list of str) – Names of the columns where to save the assigned region names for paired features

	view_name_col (str) – Column of view_df with region names. Default “name”.

	drop_unassigned (bool) – If True, drop intervals in features that do not overlap a region in the view.
Default False.

	combined_assignments_column (str or None) – If set to a string value, will combine assignments from two sides of paired
features when they match into column with this name: region name when regions
assigned to both sides match, np.nan if not.
Default “region”

	force (bool, True or False) – if features already have features_view_col (paired or not, depending on the feature types),
should we re-wrtie region columns or keep them.

	
cooltools.lib.common.assign_view_paired(features, view_df, cols_paired=['chrom1', 'start1', 'end1', 'chrom2', 'start2', 'end2'], cols_view=['chrom', 'start', 'end'], features_view_cols=['region1', 'region2'], view_name_col='name', drop_unassigned=False)

	Assign region names from the view to each feature

Assigns a regular 1D view independently to each side of a bedpe-style dataframe.
Will add two columns with region names (features_view_cols)

	Parameters

	
	features (pd.DataFrame) – bedpe-style dataframe

	view_df (pandas.DataFrame) – ViewFrame specifying region start and ends for assignment. Attempts to
convert dictionary and pd.Series formats to viewFrames.

	cols_paired (list of str) – The names of columns containing the chromosome, start and end of the
genomic intervals. The default values are “chrom1”, “start1”, “end1”, “chrom2”,
“start2”, “end2”.

	cols_view (list of str) – The names of columns containing the chromosome, start and end of the
genomic intervals in the view. The default values are “chrom”, “start”, “end”.

	features_view_cols (list of str) – Names of the columns where to save the assigned region names

	view_name_col (str) – Column of view_df with region names. Default “name”.

	drop_unassigned (bool) – If True, drop intervals in df that do not overlap a region in the view.
Default False.

	
cooltools.lib.common.make_cooler_view(clr, ucsc_names=False)

	Generate a full chromosome viewframe
using cooler’s chromsizes

	Parameters

	
	clr (cooler) – cooler-object to extract chromsizes

	ucsc_names (bool) – Use full UCSC formatted names instead
of short chromosome names.

	Returns

	cooler_view (viewframe) – full chromosome viewframe

	
cooltools.lib.common.mask_cooler_bad_bins(track, bintable)

	Mask (set to NaN) values in track where bin is masked in bintable.

Currently used in cli.get_saddle().
TODO: determine if this should be used elsewhere.

	Parameters

	
	track (tuple of (DataFrame, str)) – bedGraph-like dataframe along with the name of the value column.

	bintable (tuple of (DataFrame, str)) – bedGraph-like dataframe along with the name of the weight column.

	Returns

	track (DataFrame) – New bedGraph-like dataframe with bad bins masked in the value column

	
cooltools.lib.common.pool_decorator(func)

	A decorator function that enables multiprocessing for a given function.
The function must have a map_functor keyword argument.
It works by hijacking map_functor argument and substituting it with the
parallel one: multiprocess.Pool(nproc).imap, when nproc > 1

	Parameters

	func (callable) – The function to be decorated.

	Returns

	A wrapper function that enables multiprocessing for the given function.

	
cooltools.lib.common.view_from_track(track_df)

	

numutils

	
cooltools.lib.numutils.COMED(xs, ys, has_nans=False)

	Calculate the comedian - the robust median-based counterpart of
Pearson’s r.

comedian = median((xs-median(xs))*(ys-median(ys))) / MAD(xs) / MAD(ys)

	Parameters

	has_nans (bool) – if True, mask (x,y) pairs with at least one NaN

Notes

Citations: “On MAD and comedians” by Michael Falk (1997),
“Robust Estimation of the Correlation Coefficient: An Attempt of Survey”
by Georgy Shevlyakov and Pavel Smirnov (2011)

	
cooltools.lib.numutils.MAD(arr, axis=None, has_nans=False)

	Calculate the Median Absolute Deviation from the median.

	Parameters

	
	arr (np.ndarray) – Input data.

	axis (int) – The axis along which to calculate MAD.

	has_nans (bool) – If True, use the slower NaN-aware method to calculate medians.

	
cooltools.lib.numutils.adaptive_coarsegrain(ar, countar, cutoff=5, max_levels=8, min_shape=8)

	Adaptively coarsegrain a Hi-C matrix based on local neighborhood pooling
of counts.

	Parameters

	
	ar (array_like, shape (n, n)) – A square Hi-C matrix to coarsegrain. Usually this would be a balanced
matrix.

	countar (array_like, shape (n, n)) – The raw count matrix for the same area. Has to be the same shape as the
Hi-C matrix.

	cutoff (float, optional) – A minimum number of raw counts per pixel required to stop 2x2 pooling.
Larger cutoff values would lead to a more coarse-grained, but smoother
map. 3 is a good default value for display purposes, could be lowered
to 1 or 2 to make the map less pixelated. Setting it to 1 will only
ensure there are no zeros in the map.

	max_levels (int, optional) – How many levels of coarsening to perform. It is safe to keep this
number large as very coarsened map will have large counts and no
substitutions would be made at coarser levels.

	min_shape (int, optional) – Stop coarsegraining when coarsegrained array shape is less than that.

	Returns

	Smoothed array, shape (n, n)

Notes

The algorithm works as follows:

First, it pads an array with NaNs to the nearest power of two. Second, it
coarsens the array in powers of two until the size is less than minshape.

Third, it starts with the most coarsened array, and goes one level up.
It looks at all 4 pixels that make each pixel in the second-to-last
coarsened array. If the raw counts for any valid (non-NaN) pixel are less
than cutoff, it replaces the values of the valid (4 or less) pixels
with the NaN-aware average. It is then applied to the next
(less coarsened) level until it reaches the original resolution.

In the resulting matrix, there are guaranteed to be no zeros, unless very
large zero-only areas were provided such that zeros were produced
max_levels times when coarsening.

Examples

>>> c = cooler.Cooler("/path/to/some/cooler/at/about/2000bp/resolution")

>>> # sample region of about 6000x6000
>>> mat = c.matrix(balance=True).fetch("chr1:10000000-22000000")
>>> mat_raw = c.matrix(balance=False).fetch("chr1:10000000-22000000")
>>> mat_cg = adaptive_coarsegrain(mat, mat_raw)

>>> plt.figure(figsize=(16,7))
>>> ax = plt.subplot(121)
>>> plt.imshow(np.log(mat), vmax=-3)
>>> plt.colorbar()
>>> plt.subplot(122, sharex=ax, sharey=ax)
>>> plt.imshow(np.log(mat_cg), vmax=-3)
>>> plt.colorbar()

	
cooltools.lib.numutils.coarsen(reduction, x, axes, trim_excess=False)

	Coarsen an array by applying reduction to fixed size neighborhoods.
Adapted from dask.array.coarsen to work on regular numpy arrays.

	Parameters

	
	reduction (function) – Function like np.sum, np.mean, etc…

	x (np.ndarray) – Array to be coarsened

	axes (dict) – Mapping of axis to coarsening factor

	trim_excess (bool, optional) – Remove excess elements. Default is False.

Examples

Provide dictionary of scale per dimension

>>> x = np.array([1, 2, 3, 4, 5, 6])
>>> coarsen(np.sum, x, {0: 2})
array([3, 7, 11])

>>> coarsen(np.max, x, {0: 3})
array([3, 6])

>>> x = np.arange(24).reshape((4, 6))
>>> x
array([[0, 1, 2, 3, 4, 5],
 [6, 7, 8, 9, 10, 11],
 [12, 13, 14, 15, 16, 17],
 [18, 19, 20, 21, 22, 23]])

>>> coarsen(np.min, x, {0: 2, 1: 3})
array([[0, 3],
 [12, 15]])

See also

dask.array.coarsen

	
cooltools.lib.numutils.dist_to_mask(mask, side='min')

	Calculate the distance to the nearest True element of an array.

	Parameters

	
	mask (iterable of bool) – A boolean array.

	side (str) – The side . Accepted values are:
‘left’ : calculate the distance to the nearest True value on the left
‘right’ : calculate the distance to the nearest True value on the right
‘min’ : calculate the distance to the closest True value
‘max’ : calculate the distance to the furthest of the two neighbouring True values

	Returns

	dist (array of int)

Notes

The solution is borrowed from https://stackoverflow.com/questions/18196811/cumsum-reset-at-nan

	
cooltools.lib.numutils.fill_diag(arr, x, i=0, copy=True)

	Identical to set_diag, but returns a copy by default

	
cooltools.lib.numutils.fill_inf(arr, pos_value=0, neg_value=0, copy=True)

	Replaces positive and negative infinity entries in an array with the
provided values.

	Parameters

	
	arr (np.array) –

	pos_value (float) – Fill value for np.inf

	neg_value (float) – Fill value for -np.inf

	copy (bool, optional) – If True, creates a copy of x, otherwise replaces values in-place.
By default, True.

	
cooltools.lib.numutils.fill_na(arr, value=0, copy=True)

	Replaces np.nan entries in an array with the provided value.

	Parameters

	
	arr (np.array) –

	value (float) –

	copy (bool, optional) – If True, creates a copy of x, otherwise replaces values in-place.
By default, True.

	
cooltools.lib.numutils.fill_nainf(arr, value=0, copy=True)

	Replaces np.nan and np.inf entries in an array with the provided value.

	Parameters

	
	arr (np.array) –

	value (float) –

	copy (bool, optional) – If True, creates a copy of x, otherwise replaces values in-place.
By default, True.

Notes

Differs from np.nan_to_num in that it replaces np.inf with the same
number as np.nan.

	
cooltools.lib.numutils.get_diag(arr, i=0)

	Get the i-th diagonal of a matrix.
This solution was borrowed from
http://stackoverflow.com/questions/9958577/changing-the-values-of-the-diagonal-of-a-matrix-in-numpy

	
cooltools.lib.numutils.get_eig(mat, n=3, mask_zero_rows=False, subtract_mean=False, divide_by_mean=False)

	Perform an eigenvector decomposition.

	Parameters

	
	mat (np.ndarray) – A square matrix, must not contain nans, infs or zero rows.

	n (int) – The number of eigenvectors to return. Output is backfilled with NaNs
when n exceeds the size of the input matrix.

	mask_zero_rows (bool) – If True, mask empty rows/columns before eigenvector decomposition.
Works only with symmetric matrices.

	subtract_mean (bool) – If True, subtract the mean from the matrix.

	divide_by_mean (bool) – If True, divide the matrix by its mean.

	Returns

	
	eigvecs (np.ndarray) – An array of eigenvectors (in rows), sorted by a decreasing absolute
eigenvalue.

	eigvals (np.ndarray) – An array of sorted eigenvalues.

	
cooltools.lib.numutils.get_finite(arr)

	Select only finite elements of an array.

	
cooltools.lib.numutils.get_kernel(w, p, ktype)

	Return typical kernels given size parameteres w, p,and kernel type.

	Parameters

	
	w (int) – Outer kernel size (actually half of it).

	p (int) – Inner kernel size (half of it).

	ktype (str) – Name of the kernel type, could be one of the following: ‘donut’,
‘vertical’, ‘horizontal’, ‘lowleft’, ‘upright’.

	Returns

	kernel (ndarray) – A square matrix of int type filled with 1 and 0, according to the
kernel type.

	
cooltools.lib.numutils.infer_mask2D(mat)

	

	
cooltools.lib.numutils.interp_nan(a_init, pad_zeros=True, method='linear', verbose=False)

	Linearly interpolate to fill NaN rows and columns in a matrix.
Also interpolates NaNs in 1D arrays.

	Parameters

	
	a_init (np.array) –

	pad_zeros (bool, optional) – If True, pads the matrix with zeros to fill NaNs at the edges.
By default, True.

	method (str, optional) – For 2D: “linear”, “nearest”, or “splinef2d”
For 1D: “linear”, “nearest”, “zero”, “slinear”, “quadratic”, “cubic”

	Returns

	array with NaNs linearly interpolated

Notes

1D case adapted from: https://stackoverflow.com/a/39592604
2D case assumes that entire rows or columns are masked & edges to be
NaN-free, but is much faster than griddata implementation.

	
cooltools.lib.numutils.interpolate_bad_singletons(mat, mask=None, fillDiagonal=True, returnMask=False, secondPass=True, verbose=False)

	Interpolate singleton missing bins for visualization

Examples

>>> ax = plt.subplot(121)
>>> maxval = np.log(np.nanmean(np.diag(mat,3))*2)
>>> plt.matshow(np.log(mat)), vmax=maxval, fignum=False)
>>> plt.set_cmap('fall');
>>> plt.subplot(122, sharex=ax, sharey=ax)
>>> plt.matshow(
... np.log(interpolate_bad_singletons(remove_good_singletons(mat))),
... vmax=maxval,
... fignum=False
...)
>>> plt.set_cmap('fall');
>>> plt.show()

	
cooltools.lib.numutils.is_symmetric(mat)

	Check if a matrix is symmetric.

	
cooltools.lib.numutils.normalize_score(arr, norm='z', axis=None, has_nans=True)

	Normalize an array by subtracting the first moment and dividing the
residual by the second.

	Parameters

	
	arr (np.ndarray) – Input data.

	norm (str) – The type of normalization.
‘z’ - report z-scores,
norm_arr = (arr - mean(arr)) / std(arr)

’mad’ - report deviations from the median in units of MAD
(Median Absolute Deviation from the median),
norm_arr = (arr - median(arr)) / MAD(arr)

’madz’ - report robust z-scores, i.e. estimate the mean as
the median and the standard error as MAD / 0.67499,
norm_arr = (arr - median(arr)) / MAD(arr) * 0.67499

	axis (int) – The axis along which to calculate the normalization parameters.

	has_nans (bool) – If True, use slower NaN-aware methods to calculate the
normalization parameters.

	
cooltools.lib.numutils.persistent_log_bins(end=10, bins_per_order_magnitude=10)

	Creates most nicely looking log-spaced integer bins starting at 1, with the
defined number of bins per order of magnitude.

	Parameters

	
	end (number (int recommended) log10 of the last value. It is safe to put a) –

	later. (large value here and select your range of bins) –

	bins_per_order_magnitude (int >0 how many bins per order of magnitude) –

Notes

This is not a replacement for logbins, and it has a different purpose.

Difference between this and logbins

Logbins creates bins from lo to hi, spaced logarithmically with an
appriximate ratio. Logbins makes sure that the last bin is large (i.e.
hi/ratio … hi), and will not allow the last bin to be much less than
ratio. It would slightly adjust the ratio to achieve that. As a result, by
construciton, logbins bins are different for different lo or hi.

This function is designed to create exactly the same bins that only depend
on one parameter, bins_per_order_magnitude. The goal is to make things
calculated for different datasets/organisms/etc. comparable. For example, if
these bins are used, it would allow us to divide P(s) for two different
organisms by each other because it was calculated for the same bins.

The price you pay for such versatility is that the last bin can be much less
than others in real application. For example, if you have 10 bins per order
of magnitude (ratio of 1.25), but your data ends at 10500, then the only
points in the last bin would be 10000..10500, 1/5 of what could be. This may
make the last point noisy.

The main part is done using np.logspace and rounding to the nearest integer,
followed by unique. The gaps are then re-sorted to ensure that gaps are
strictly increasing. The re-sorting of gaps was essential, and produced
better results than manual adjustment.

Alternatives that produce irregular bins

Using np.unique(np.logspace(a,b,N,dtype=int)) can be sub-optimal For
example, np.unique(np.logspace(0,1,11,dtype=int)) = [1, 2, 3, 5, 6, 7,
10] Note the gaps jump from 1 to 2 back to 1

Similarly using np.unique(np.rint(np.logspace..)) can be suboptimal
np.unique(np.array(np.rint(np.logspace(0,1,9)),dtype=int)) = [1, 2, 3,
4, 6, 7, 10]

for bins_per_order_of_magnitude=16, 10 is not in bins. Other than that, 10,
100, 1000, etc. are always included.

	
cooltools.lib.numutils.remove_good_singletons(mat, mask=None, returnMask=False)

	

	
cooltools.lib.numutils.robust_gauss_filter(ar, sigma=2, functon=<Mock name='mock.gaussian_filter1d' id='139838452479264'>, kwargs=None)

	Implements an edge-handling mode for gaussian filter that basically ignores
the edge, and also handles NaNs.

	Parameters

	
	ar (array-like) – Input array

	sigma (float) – sigma to be passed to the filter

	function (callable) – Filter to use. Default is gauusian_filter1d

	kwargs (dict) – Additional args to pass to the filter. Default:None

Notes

Available edge-handling modes in ndimage.filters attempt to somehow
“extrapolate” the edge value and then apply the filter (see
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.convolve.html).

That’s likely because convolve uses fast fourier transform, which requires

the kernel to be constant. Here we design a better edge-handling for the
gaussian smoothing.

In a gaussian-filtered array, a pixel away from the edge is a mean of nearby
pixels with gaussian weights. With this mode, pixels near start/end are
also a mean of nearby pixels with gaussian weights. That’s it. If we
encounter NANs, we also simply ignore them, following the same definition:
mean of nearby valid pixels. Yes, it raises the weights for the first/last
pixels, because now only a part of the whole gaussian is being used (up to
1/2 for the first/last pixel and large sigma). But it preserves the “mean of
nearby pixels” definition. It is different from padding with zeros (it
would drag the first pixel down to be more like zero). It is also different
from “nearest” - that gives too much weight to the first/last pixel.

To achieve this smoothing, we preform regular gaussian smoothing using
mode=”constant” (pad with zeros). Then we take an array of valid pixels
and smooth it the same way. This calculates how many “average valid pixels”
contributed to each point of a smoothed array. Dividing one by the other
achieves the desired result.

	
cooltools.lib.numutils.set_diag(arr, x, i=0, copy=False)

	Rewrite the i-th diagonal of a matrix with a value or an array of values.
Supports 2D arrays, square or rectangular. In-place by default.

	Parameters

	
	arr (2-D array) – Array whose diagonal is to be filled.

	x (scalar or 1-D vector of correct length) – Values to be written on the diagonal.

	i (int, optional) – Which diagonal to write to. Default is 0.
Main diagonal is 0; upper diagonals are positive and
lower diagonals are negative.

	copy (bool, optional) – Return a copy. Diagonal is written in-place if false.
Default is False.

	Returns

	Array with diagonal filled.

Notes

Similar to numpy.fill_diagonal, but allows for kth diagonals as well.
This solution was borrowed from
http://stackoverflow.com/questions/9958577/changing-the-values-of-the-diagonal-of-a-matrix-in-numpy

	
cooltools.lib.numutils.slice_sorted(arr, lo, hi)

	Get the subset of a sorted array with values >=lo and <hi.
A faster version of arr[(arr>=lo) & (arr<hi)]

	
cooltools.lib.numutils.smooth(y, box_pts)

	

	
cooltools.lib.numutils.stochastic_sd(arr, n=10000, seed=0)

	Estimate the standard deviation of an array by considering only the
subset of its elements.

	Parameters

	
	n (int) – The number of elements to consider. If the array contains fewer elements,
use all.

	seed (int) – The seed for the random number generator.

	
cooltools.lib.numutils.weighted_groupby_mean(df, group_by, weigh_by, mode='mean')

	Weighted mean, std, and std in log space for a dataframe.groupby

	Parameters

	
	df (dataframe) – Dataframe to groupby

	group_by (str or list) – Columns to group by

	weight_by (str) – Column to use as weights

	mode ("mean", "std" or "logstd") – Do the weighted mean, the weighted standard deviaton,
or the weighted std in log-space from the mean-log value
(useful for P(s) etc.)

	
cooltools.lib.numutils.zoom_array(in_array, final_shape, same_sum=False, zoom_function=functools.partial(<Mock name='mock.zoom' id='139838452479072'>, order=1), **zoom_kwargs)

	Rescale an array or image.

Normally, one can use scipy.ndimage.zoom to do array/image rescaling.
However, scipy.ndimage.zoom does not coarsegrain images well. It basically
takes nearest neighbor, rather than averaging all the pixels, when
coarsegraining arrays. This increases noise. Photoshop doesn’t do that, and
performs some smart interpolation-averaging instead.

If you were to coarsegrain an array by an integer factor, e.g. 100x100 ->
25x25, you just need to do block-averaging, that’s easy, and it reduces
noise. But what if you want to coarsegrain 100x100 -> 30x30?

Then my friend you are in trouble. But this function will help you. This
function will blow up your 100x100 array to a 120x120 array using
scipy.ndimage zoom Then it will coarsegrain a 120x120 array by
block-averaging in 4x4 chunks.

It will do it independently for each dimension, so if you want a 100x100
array to become a 60x120 array, it will blow up the first and the second
dimension to 120, and then block-average only the first dimension.

(Copied from mirnylib.numutils)

	Parameters

	
	in_array (ndarray) – n-dimensional numpy array (1D also works)

	final_shape (shape tuple) – resulting shape of an array

	same_sum (bool, optional) – Preserve a sum of the array, rather than values. By default, values
are preserved

	zoom_function (callable) – By default, scipy.ndimage.zoom with order=1. You can plug your own.

	**zoom_kwargs – Options to pass to zoomFunction.

	Returns

	rescaled (ndarray) – Rescaled version of in_array

peaks

	
cooltools.lib.peaks.find_peak_prominence(arr, max_dist=None)

	Find the local maxima of an array and their prominence.
The prominence of a peak is defined as the maximal difference between the
height of the peak and the lowest point in the range until a higher peak.

	Parameters

	
	arr (array_like) –

	max_dist (int) – If specified, the distance to the adjacent higher peaks is limited
by max_dist.

	Returns

	
	loc_max_poss (numpy.array) – The positions of local maxima of a given array.

	proms (numpy.array) – The prominence of the detected maxima.

	
cooltools.lib.peaks.find_peak_prominence_iterative(arr, min_prom=None, max_prom=None, steps_prom=1000, log_space_proms=True, min_n_peak_pairs=5)

	Finds the minima/maxima of an array using the peakdet algorithm at
different values of the threshold prominence. For each location, returns
the maximal threshold prominence at which it is called as a minimum/maximum.

Note that this function is inferior in every aspect to find_peak_prominence.
We keep it for testing purposes and will remove in the future.

	Parameters

	
	arr (array_like) –

	min_prom (float) – The minimal and the maximal values of prominence to probe.
If None, these values are inferred as the minimal and the maximal
non-zero difference between any two elements of v.

	max_prom (float) – The minimal and the maximal values of prominence to probe.
If None, these values are inferred as the minimal and the maximal
non-zero difference between any two elements of v.

	steps_prom (int) – The number of threshold prominence values to probe in the range
between min_prom and max_prom.

	log_space_proms (bool) – If True, probe logarithmically spaced values of the threshold prominence
in the range between min_prom and max_prom.

	min_n_peak_pairs (int) – If the number of detected minima/maxima at a certain threshold
prominence is < min_n_peak_pairs, the detected peaks are ignored.

	Returns

	minproms, maxproms (numpy.array) – The prominence of detected minima and maxima.

	
cooltools.lib.peaks.peakdet(arr, min_prominence)

	Detect local peaks in an array.
Finds a sequence of minima and maxima such that the two consecutive extrema
have a value difference (i.e. a prominence) >= min_prominence. This is
analogous to the definition of prominence in topography:
https://en.wikipedia.org/wiki/Topographic_prominence

The original peakdet algorithm was designed by Eli Billauer and described in
http://billauer.co.il/peakdet.html (v. 3.4.05, Explicitly not copyrighted).
This function is released to the public domain; Any use is allowed.
The Python implementation was published
by endolith on Github: https://gist.github.com/endolith/250860 .

Here, we use the endolith’s implementation with minimal to none modifications
to the algorithm, but with significant changes in the interface and
the documentation

	Parameters

	
	arr (array_like) –

	min_prominence (float) – The minimal prominence of detected extrema.

	Returns

	maxidxs, minidx (numpy.array) – The indices of the maxima and minima in arr.

plotting

Migrated from mirnylib.plotting.

	
cooltools.lib.plotting.get_cmap(name)

	

	
cooltools.lib.plotting.gridspec_inches(wcols, hrows, fig_kwargs={})

	

	
cooltools.lib.plotting.list_to_colormap(color_list, name=None)

	

schemas

 Release notes

Release notes

Upcoming release [https://github.com/open2c/cooltools/compare/v0.6.1...HEAD]

v0.6.1 [https://github.com/open2c/cooltools/compare/v0.6.0...v0.6.1]

Maintenance

	Bug fix in CLI pileup

v0.6.0 [https://github.com/open2c/cooltools/compare/v0.5.4...v0.6.0]

New features

	New function/tool rearrange_cooler to reorder/subset/flip regions of the genome in a cooler

	New test dataset for micro-C from hESCs

API changes

	snipping: reorder the axes of the output snipper array to (snippet_idx, i, j).

Maintenance

	snipping: fix spurious nan->0 conversion of bad bins in on-diagonal pileups

	snipping: fix snipping without provided view

	snipping: fix for storing the stack in a file

	virtual4c: fix for the case when viewpoint has no contacts

	fix: Fix numba deprecation warnings by adding nopython=True

	Other small bugfixes

v0.5.4 [https://github.com/open2c/cooltools/compare/v0.5.3...v0.5.4]

Maintenance

	Updated import statements and requirements to use cooler 0.9.

v0.5.3 [https://github.com/open2c/cooltools/compare/v0.5.2...v0.5.3]

Maintenance

	Improvements for read_expected_from_file

	Bug fix for dot caller 0/0 occurrences

	Remove cytoolz dependency

	Pin cooler <0.9 until compatibility

v0.5.2 [https://github.com/open2c/cooltools/compare/v0.5.1...v0.5.2]

API changes

	remove custom bad_bins from expected & eigdecomp #336 [https://github.com/open2c/cooltools/pull/336]

	coverage can store total cis counts in the cooler, and sampling can use cis counts #332 [https://github.com/open2c/cooltools/pull/322]

	can now calculate coverge for balanced data #385 [https://github.com/open2c/cooltools/pull/385]

	new drop_track_na argument for align_track_with_cooler, allows calcultions that that missing data in tracks as absent #360 [https://github.com/open2c/cooltools/pull/360]

	multi-thread insulation by chromosome (TODO: by chunk)

	Virtual 4C tool #378 [https://github.com/open2c/cooltools/pull/378]

CLI changes

	CLI tool for coverage()

Documentation

	snipping documentation

	dots tutorial

	CLI tutorial

Maintenance

	Dropped support for Python 3.7 (due to Pandas compatability issues)

	Added support for Python 3.10

	Minor bugfixes and compatibility updates

	Pandas compatibility, pinned above 1.5.1

	bioframe compatability

	scikit-learn, pinned above >=1.1.2

	saddle binedges, value limits #361 [https://github.com/open2c/cooltools/pull/361]

	pileup CLI bugfix for reading features

Other

	Code of conduct [https://github.com/open2c/cooltools/blob/master/CODE_OF_CONDUCT.md]

v0.5.1 [https://github.com/open2c/cooltools/compare/v0.5.0...v0.5.1]

API changes

	cooltools.dots is the new user-facing function for calling dots

Maintenance

	Compatibility with pandas 1.4

	Strict dictinary typing for new numba versions

	Update to bioframe 0.3.3

v0.5.0 [https://github.com/open2c/cooltools/compare/v0.4.0...v0.5.0]

NOTE: THIS RELEASE BREAKS BACKWARDS COMPATIBILITY!

This release addresses two major issues:

	Integration with bioframe viewframes [https://bioframe.readthedocs.io/en/latest/guide-intervalops.html#genomic-views] defined as of bioframe v0.3.

	Synchronization of the CLI and Python API

Additionally, the documentation [https://cooltools.readthedocs.io/en/latest/] has been greatly improved and now includes detailed tutorials that show how to use the cooltools API in conjunction with other Open2C libraries. These tutorials are automatically re-built from notebooks copied from https://github.com/open2c/open2c_examples repository.

API changes

	More clear separation of top-level user-facing functions and low-level API.

	Most standard analyses can be performed using just the user-facing functions which are imported into the top-level namespace. Some of them are new or heavily modified from earlier versions.

	cooltools.expected_cis and cooltools.expected_trans for average by-diagonal contact frequency in intra-chromosomal data and in inter-chromosomal data, respectively

	cooltools.eigs_cis and cooltools.eigs_trans for eigenvectors (compartment profiles) of cis and trans data, repectively

	cooltools.digitize and cooltools.saddle can be used together for creation of 2D summary tables of Hi-C interactions in relation to a digitized genomic track, such as eigenvectors

	cooltools.insulation for insulation score and annotation of insulating boundaries

	cooltools.directionality for directionality index

	cooltools.pileup for average signal at 1D or 2D genomic features, including APA

	cooltools.coverage for calculation of per-bin sequencing depth

	cooltools.sample for random downsampling of cooler files

	For non-standard analyses that require custom algorithms, a lower level API is available under cooltools.api

	Most functions now take an optional view_df argument. A pandas dataframe defining a genomic view (https://bioframe.readthedocs.io/en/latest/guide-technical-notes.html) can be provided to limit the analyses to regions included in the view. If not provided, the analysis is performed on whole chromosomes according to what’s stored in the cooler.

	All functions apart from coverage now take a clr_weight_name argument to specify how the desired balancing weight column is named. Providing a None value allows one to use unbalanced data (except the eigs_cis, eigs_trans methods, since eigendecomposition is only defined for balanced Hi-C data).

	The output of expected-cis function has changed: it now contains region1 and region2 columns (with identical values in case of within-region expected). Additionally, it now allows smoothing of the result to avoid noisy values at long distances (enabled by default and result saved in additional columns of the dataframe)

	The new cooltools.insulation method includes a thresholding step to detect strong boundaries, using either the Li or the Otsu method (from skimage.thresholding), or a fixed float value. The result of thresholding for each window size is stored as a boolean in a new column is_boundary_{window}.

	New subpackage sandbox for experimental codes that are either candidates for merging into cooltools or candidates for removal. No documentation and tests are expected, proceed at your own risk.

	New subpackage lib for auxiliary modules

CLI changes

	CLI tools are renamed with prefixes dropped (e.g. diamond-insulation is now insulation), to align with names of user-facing API functions.

	The CLI tool for expected has been split in two for intra- and inter-chromosomal data (expected-cis and expected-trans, repectively).

	Similarly, the compartment profile calculation is now separate for cis and trans (eigs-cis and eigs-trans).

	New CLI tool cooltools pileup for creation of average features based on Hi-C data. It takes a .bed- or .bedpe-style file to create average on-diagonal or off-diagonal pileups, respectively.

Maintenance

Support for Python 3.6 dropped

v0.4.0 [https://github.com/open2c/cooltools/compare/v0.3.2...v0.4.0]

Date: 2021-04-06

Maintenance

	Make saddle strength work with NaNs

	Add output option to diamond-insulation

	Upgrade bioframe dependency

	Parallelize random sampling

	Various compatibility fixes to expected, saddle and snipping and elsewhere to work with standard formats for “expected” and “regions”: https://github.com/open2c/cooltools/issues/217

New features

	New dataset download API

	New functionality for smoothing P(s) and derivatives (API is not yet stable): logbin_expected, interpolate_expected

v0.3.2 [https://github.com/open2c/cooltools/compare/v0.3.0...v0.3.2]

Date: 2020-05-05

Updates and bug fixes

	Error checking for vmin/vmax in compute-saddle

	Various updates and fixes to expected and dot-caller code

Project health

	Added docs on RTD, tutorial notebooks, code formatting, linting, and contribution guidelines.

v0.3.0 [https://github.com/open2c/cooltools/compare/v0.2.0...v0.3.0]

Date: 2019-11-04

	Several library utilities added: plotting.gridspec_inches, adaptive_coarsegrain, singleton interpolation, and colormaps.

	New tools: cooltools sample for random downsampling, cooltools coverage for marginalization.

Improvements to saddle functions:

	compute-saddle now saves saddledata without transformation, and the scale argument (with options log or linear) now only determines how the saddle is plotted. Consequently, saddleplot function now expects untransformed saddledata, and plots it directly or with log-scaling of the colormap. (https://github.com/open2c/cooltools/pull/105)

	Added saddle.mask_bad_bins method to filter bins in a track based on Hi-C bin-level filtering - improves saddle and histograms when using ChIP-seq and similar tracks. It is automatically applied in the CLI interface. Shouldn’t affect the results when using eigenvectors calculated from the same data.

	make_saddle Python function and compute-saddle CLI now allow setting min and max distance to use for calculating saddles.

v0.2.0 [https://github.com/open2c/cooltools/compare/v0.1.0...v0.2.0]

Date: 2019-05-02

	New tagged release for DCIC. Many updates, including more memory-efficient insulation score calling. Next release should include docs.

v0.1.0 [https://github.com/open2c/cooltools/releases/tag/v0.1.0]

Date: 2018-05-07

	First official release

 Python Module Index

 Python Module Index

 c

 		 	

 		
 c	

 	[image: -]
 	
 cooltools	

 	
 	
 cooltools.api.coverage	

 	
 	
 cooltools.api.directionality	

 	
 	
 cooltools.api.dotfinder	

 	
 	
 cooltools.api.eigdecomp	

 	
 	
 cooltools.api.expected	

 	
 	
 cooltools.api.insulation	

 	
 	
 cooltools.api.saddle	

 	
 	
 cooltools.api.sample	

 	
 	
 cooltools.api.snipping	

 	
 	
 cooltools.api.virtual4c	

 	
 	
 cooltools.lib.common	

 	
 	
 cooltools.lib.numutils	

 	
 	
 cooltools.lib.peaks	

 	
 	
 cooltools.lib.plotting	

 	
 	
 cooltools.lib.schemas	

 Index

Index

 Symbols
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | V
 | W
 | Z

Symbols

 	
 	
 --aggregate

 	cooltools-pileup command line option

 	
 --aggregate-smoothed

 	cooltools-expected-cis command line option

 	
 --all-names

 	cooltools-genome-binnify command line option

 	
 --append-raw-scores

 	cooltools-insulation command line option

 	
 --assembly

 	cooltools-rearrange command line option

 	
 --bigwig

 	cooltools-coverage command line option

 	cooltools-eigs-cis command line option

 	cooltools-eigs-trans command line option

 	cooltools-insulation command line option

 	cooltools-virtual4c command line option

 	
 --chunksize

 	cooltools-coverage command line option

 	cooltools-expected-cis command line option

 	cooltools-expected-trans command line option

 	cooltools-insulation command line option

 	cooltools-random-sample command line option

 	cooltools-rearrange command line option

 	
 --cis-count

 	cooltools-random-sample command line option

 	
 --clr-weight-name

 	cooltools-dots command line option

 	cooltools-eigs-cis command line option

 	cooltools-eigs-trans command line option

 	cooltools-expected-cis command line option

 	cooltools-expected-trans command line option

 	cooltools-insulation command line option

 	cooltools-pileup command line option

 	cooltools-saddle command line option

 	cooltools-virtual4c command line option

 	
 --clr_weight_name

 	cooltools-coverage command line option

 	
 --clustering-radius

 	cooltools-dots command line option

 	
 --cmap

 	cooltools-saddle command line option

 	
 --contact-type

 	cooltools-saddle command line option

 	
 --count

 	cooltools-random-sample command line option

 	
 --debug

 	cooltools command line option

 	
 --exact

 	cooltools-random-sample command line option

 	
 --expected

 	cooltools-pileup command line option

 	
 --fdr

 	cooltools-dots command line option

 	
 --features-format

 	cooltools-pileup command line option

 	
 --fig

 	cooltools-saddle command line option

 	
 --flank

 	cooltools-pileup command line option

 	
 --frac

 	cooltools-random-sample command line option

 	
 --hist-color

 	cooltools-saddle command line option

 	
 --ignore-diags

 	cooltools-coverage command line option

 	cooltools-eigs-cis command line option

 	cooltools-expected-cis command line option

 	cooltools-insulation command line option

 	cooltools-pileup command line option

 	
 --mapped-only

 	cooltools-genome-gc command line option

 	
 --max-dist

 	cooltools-saddle command line option

 	
 --max-loci-separation

 	cooltools-dots command line option

 	
 --max-nans-tolerated

 	cooltools-dots command line option

 	
 --min-dist

 	cooltools-saddle command line option

 	
 --min-dist-bad-bin

 	cooltools-insulation command line option

 	
 --min-frac-valid-pixels

 	cooltools-insulation command line option

 	
 --mode

 	cooltools-rearrange command line option

 	
 --n-bins

 	cooltools-saddle command line option

 	
 --n-eigs

 	cooltools-eigs-cis command line option

 	cooltools-eigs-trans command line option

 	
 --new-chrom-col

 	cooltools-rearrange command line option

 	
 --no-strength

 	cooltools-saddle command line option

 	
 --nproc

 	cooltools-coverage command line option

 	cooltools-dots command line option

 	cooltools-expected-cis command line option

 	cooltools-expected-trans command line option

 	cooltools-insulation command line option

 	cooltools-pileup command line option

 	cooltools-random-sample command line option

 	cooltools-virtual4c command line option

 	
 --num-lambda-bins

 	cooltools-dots command line option

 	
 --orientation-col

 	cooltools-rearrange command line option

 	
 --out

 	cooltools-pileup command line option

 	
 --out-format

 	cooltools-pileup command line option

 	
 	
 --out-prefix

 	cooltools-eigs-cis command line option

 	cooltools-eigs-trans command line option

 	cooltools-saddle command line option

 	cooltools-virtual4c command line option

 	
 --output

 	cooltools-coverage command line option

 	cooltools-dots command line option

 	cooltools-expected-cis command line option

 	cooltools-expected-trans command line option

 	cooltools-insulation command line option

 	
 --phasing-track

 	cooltools-eigs-cis command line option

 	cooltools-eigs-trans command line option

 	
 --qrange

 	cooltools-saddle command line option

 	
 --regions

 	cooltools-dots command line option

 	cooltools-eigs-cis command line option

 	cooltools-eigs-trans command line option

 	cooltools-expected-cis command line option

 	cooltools-expected-trans command line option

 	cooltools-insulation command line option

 	cooltools-pileup command line option

 	cooltools-saddle command line option

 	
 --scale

 	cooltools-saddle command line option

 	
 --smooth

 	cooltools-expected-cis command line option

 	
 --smooth-sigma

 	cooltools-expected-cis command line option

 	
 --store

 	cooltools-coverage command line option

 	
 --store-snips

 	cooltools-pileup command line option

 	
 --strength

 	cooltools-saddle command line option

 	
 --threshold

 	cooltools-insulation command line option

 	
 --tile-size

 	cooltools-dots command line option

 	
 --verbose

 	cooltools command line option

 	cooltools-dots command line option

 	cooltools-eigs-cis command line option

 	cooltools-eigs-trans command line option

 	cooltools-insulation command line option

 	cooltools-pileup command line option

 	cooltools-saddle command line option

 	
 --version

 	cooltools command line option

 	
 --view

 	cooltools-dots command line option

 	cooltools-eigs-cis command line option

 	cooltools-eigs-trans command line option

 	cooltools-expected-cis command line option

 	cooltools-expected-trans command line option

 	cooltools-insulation command line option

 	cooltools-pileup command line option

 	cooltools-rearrange command line option

 	cooltools-saddle command line option

 	
 --vmax

 	cooltools-saddle command line option

 	
 --vmin

 	cooltools-saddle command line option

 	
 --vrange

 	cooltools-saddle command line option

 	
 --window-pixels

 	cooltools-insulation command line option

 	
 -c

 	cooltools-expected-cis command line option

 	cooltools-expected-trans command line option

 	cooltools-random-sample command line option

 	
 -d

 	cooltools command line option

 	
 -f

 	cooltools-random-sample command line option

 	
 -n

 	cooltools-saddle command line option

 	
 -o

 	cooltools-coverage command line option

 	cooltools-dots command line option

 	cooltools-eigs-cis command line option

 	cooltools-eigs-trans command line option

 	cooltools-expected-cis command line option

 	cooltools-expected-trans command line option

 	cooltools-insulation command line option

 	cooltools-pileup command line option

 	cooltools-saddle command line option

 	cooltools-virtual4c command line option

 	
 -p

 	cooltools-coverage command line option

 	cooltools-dots command line option

 	cooltools-expected-cis command line option

 	cooltools-expected-trans command line option

 	cooltools-insulation command line option

 	cooltools-pileup command line option

 	cooltools-random-sample command line option

 	cooltools-virtual4c command line option

 	
 -t

 	cooltools-saddle command line option

 	
 -V

 	cooltools command line option

 	
 -v

 	cooltools command line option

 	cooltools-dots command line option

 	cooltools-eigs-cis command line option

 	cooltools-eigs-trans command line option

 	cooltools-pileup command line option

 	cooltools-saddle command line option

A

 	
 	adaptive_coarsegrain() (in module cooltools.lib.numutils)

 	adjusted_exp_name() (in module cooltools.api.dotfinder)

 	align_track_with_cooler() (in module cooltools.lib.common)

 	annotate_pixels_with_qvalues() (in module cooltools.api.dotfinder)

 	
 	assign_regions() (in module cooltools.lib.common)

 	assign_regions_to_bins() (in module cooltools.lib.common)

 	assign_supports() (in module cooltools.lib.common)

 	assign_view_auto() (in module cooltools.lib.common)

 	assign_view_paired() (in module cooltools.lib.common)

B

 	
 	
 BINS_PATH

 	cooltools-genome-gc command line option

 	cooltools-genome-genecov command line option

 	
 	
 BINSIZE

 	cooltools-genome-binnify command line option

 	blocksum_pairwise() (in module cooltools.api.expected)

 	bp_to_bins() (in module cooltools.api.dotfinder)

C

 	
 	calculate_insulation_score() (in module cooltools.api.insulation)

 	
 CHROMSIZES_PATH

 	cooltools-genome-binnify command line option

 	cooltools-genome-digest command line option

 	cis_eig() (in module cooltools.api.eigdecomp)

 	clust_2D_pixels() (in module cooltools.api.dotfinder)

 	cluster_filtering_hiccups() (in module cooltools.api.dotfinder)

 	clustering_step() (in module cooltools.api.dotfinder)

 	coarsen() (in module cooltools.lib.numutils)

 	combine_binned_expected() (in module cooltools.api.expected)

 	COMED() (in module cooltools.lib.numutils)

 	
 COOL_PATH

 	cooltools-coverage command line option

 	cooltools-dots command line option

 	cooltools-eigs-cis command line option

 	cooltools-eigs-trans command line option

 	cooltools-expected-cis command line option

 	cooltools-expected-trans command line option

 	cooltools-pileup command line option

 	cooltools-saddle command line option

 	cooltools-virtual4c command line option

 	CoolerSnipper (class in cooltools.api.snipping)

 	
 cooltools command line option

 	--debug

 	--verbose

 	--version

 	-d

 	-v

 	-V

 	
 cooltools-coverage command line option

 	--bigwig

 	--chunksize

 	--clr_weight_name

 	--ignore-diags

 	--nproc

 	--output

 	--store

 	-o

 	-p

 	COOL_PATH

 	
 cooltools-dots command line option

 	--clr-weight-name

 	--clustering-radius

 	--fdr

 	--max-loci-separation

 	--max-nans-tolerated

 	--nproc

 	--num-lambda-bins

 	--output

 	--regions

 	--tile-size

 	--verbose

 	--view

 	-o

 	-p

 	-v

 	COOL_PATH

 	EXPECTED_PATH

 	
 cooltools-eigs-cis command line option

 	--bigwig

 	--clr-weight-name

 	--ignore-diags

 	--n-eigs

 	--out-prefix

 	--phasing-track

 	--regions

 	--verbose

 	--view

 	-o

 	-v

 	COOL_PATH

 	
 cooltools-eigs-trans command line option

 	--bigwig

 	--clr-weight-name

 	--n-eigs

 	--out-prefix

 	--phasing-track

 	--regions

 	--verbose

 	--view

 	-o

 	-v

 	COOL_PATH

 	
 cooltools-expected-cis command line option

 	--aggregate-smoothed

 	--chunksize

 	--clr-weight-name

 	--ignore-diags

 	--nproc

 	--output

 	--regions

 	--smooth

 	--smooth-sigma

 	--view

 	-c

 	-o

 	-p

 	COOL_PATH

 	
 cooltools-expected-trans command line option

 	--chunksize

 	--clr-weight-name

 	--nproc

 	--output

 	--regions

 	--view

 	-c

 	-o

 	-p

 	COOL_PATH

 	
 cooltools-genome-binnify command line option

 	--all-names

 	BINSIZE

 	CHROMSIZES_PATH

 	
 cooltools-genome-digest command line option

 	CHROMSIZES_PATH

 	ENZYME_NAME

 	FASTA_PATH

 	
 cooltools-genome-fetch-chromsizes command line option

 	DB

 	
 cooltools-genome-gc command line option

 	--mapped-only

 	BINS_PATH

 	FASTA_PATH

 	
 cooltools-genome-genecov command line option

 	BINS_PATH

 	DB

 	
 cooltools-insulation command line option

 	--append-raw-scores

 	--bigwig

 	--chunksize

 	--clr-weight-name

 	--ignore-diags

 	--min-dist-bad-bin

 	--min-frac-valid-pixels

 	--nproc

 	--output

 	--regions

 	--threshold

 	--verbose

 	--view

 	--window-pixels

 	-o

 	-p

 	IN_PATH

 	WINDOW

 	
 	
 cooltools-pileup command line option

 	--aggregate

 	--clr-weight-name

 	--expected

 	--features-format

 	--flank

 	--ignore-diags

 	--nproc

 	--out

 	--out-format

 	--regions

 	--store-snips

 	--verbose

 	--view

 	-o

 	-p

 	-v

 	COOL_PATH

 	FEATURES_PATH

 	
 cooltools-random-sample command line option

 	--chunksize

 	--cis-count

 	--count

 	--exact

 	--frac

 	--nproc

 	-c

 	-f

 	-p

 	IN_PATH

 	OUT_PATH

 	
 cooltools-rearrange command line option

 	--assembly

 	--chunksize

 	--mode

 	--new-chrom-col

 	--orientation-col

 	--view

 	IN_PATH

 	OUT_PATH

 	
 cooltools-saddle command line option

 	--clr-weight-name

 	--cmap

 	--contact-type

 	--fig

 	--hist-color

 	--max-dist

 	--min-dist

 	--n-bins

 	--no-strength

 	--out-prefix

 	--qrange

 	--regions

 	--scale

 	--strength

 	--verbose

 	--view

 	--vmax

 	--vmin

 	--vrange

 	-n

 	-o

 	-t

 	-v

 	COOL_PATH

 	EXPECTED_PATH

 	TRACK_PATH

 	
 cooltools-virtual4c command line option

 	--bigwig

 	--clr-weight-name

 	--nproc

 	--out-prefix

 	-o

 	-p

 	COOL_PATH

 	VIEWPOINT

 	
 cooltools.api.coverage

 	module

 	
 cooltools.api.directionality

 	module

 	
 cooltools.api.dotfinder

 	module

 	
 cooltools.api.eigdecomp

 	module

 	
 cooltools.api.expected

 	module

 	
 cooltools.api.insulation

 	module

 	
 cooltools.api.saddle

 	module

 	
 cooltools.api.sample

 	module

 	
 cooltools.api.snipping

 	module

 	
 cooltools.api.virtual4c

 	module

 	
 cooltools.lib.common

 	module

 	
 cooltools.lib.numutils

 	module

 	
 cooltools.lib.peaks

 	module

 	
 cooltools.lib.plotting

 	module

 	
 cooltools.lib.schemas

 	module

 	count_all_pixels_per_block() (in module cooltools.api.expected)

 	count_all_pixels_per_diag() (in module cooltools.api.expected)

 	count_bad_pixels_per_block() (in module cooltools.api.expected)

 	count_bad_pixels_per_diag() (in module cooltools.api.expected)

 	coverage() (in module cooltools.api.coverage)

D

 	
 	
 DB

 	cooltools-genome-fetch-chromsizes command line option

 	cooltools-genome-genecov command line option

 	determine_thresholds() (in module cooltools.api.dotfinder)

 	diagsum_from_array() (in module cooltools.api.expected)

 	
 	diagsum_pairwise() (in module cooltools.api.expected)

 	diagsum_symm() (in module cooltools.api.expected)

 	digitize() (in module cooltools.api.saddle)

 	directionality() (in module cooltools.api.directionality)

 	dist_to_mask() (in module cooltools.lib.numutils)

 	dots() (in module cooltools.api.dotfinder)

E

 	
 	eigs_cis() (in module cooltools.api.eigdecomp)

 	eigs_trans() (in module cooltools.api.eigdecomp)

 	
 ENZYME_NAME

 	cooltools-genome-digest command line option

 	expand_align_features() (in module cooltools.api.snipping)

 	expected_cis() (in module cooltools.api.expected)

 	
 	
 EXPECTED_PATH

 	cooltools-dots command line option

 	cooltools-saddle command line option

 	expected_trans() (in module cooltools.api.expected)

 	ExpectedSnipper (class in cooltools.api.snipping)

 	extract_scored_pixels() (in module cooltools.api.dotfinder)

F

 	
 	
 FASTA_PATH

 	cooltools-genome-digest command line option

 	cooltools-genome-gc command line option

 	
 FEATURES_PATH

 	cooltools-pileup command line option

 	fill_diag() (in module cooltools.lib.numutils)

 	
 	fill_inf() (in module cooltools.lib.numutils)

 	fill_na() (in module cooltools.lib.numutils)

 	fill_nainf() (in module cooltools.lib.numutils)

 	find_boundaries() (in module cooltools.api.insulation)

 	find_peak_prominence() (in module cooltools.lib.peaks)

 	find_peak_prominence_iterative() (in module cooltools.lib.peaks)

G

 	
 	generate_tiles_diag_band() (in module cooltools.api.dotfinder)

 	genomewide_smooth_cvd() (in module cooltools.api.expected)

 	get_adjusted_expected_tile_some_nans() (in module cooltools.api.dotfinder)

 	get_cmap() (in module cooltools.lib.plotting)

 	get_diag() (in module cooltools.lib.numutils)

 	
 	get_eig() (in module cooltools.lib.numutils)

 	get_finite() (in module cooltools.lib.numutils)

 	get_kernel() (in module cooltools.lib.numutils)

 	get_n_pixels() (in module cooltools.api.insulation)

 	gridspec_inches() (in module cooltools.lib.plotting)

H

 	
 	histogram_scored_pixels() (in module cooltools.api.dotfinder)

I

 	
 	
 IN_PATH

 	cooltools-insulation command line option

 	cooltools-random-sample command line option

 	cooltools-rearrange command line option

 	infer_mask2D() (in module cooltools.lib.numutils)

 	insul_diamond() (in module cooltools.api.insulation)

 	
 	insulation() (in module cooltools.api.insulation)

 	interp_nan() (in module cooltools.lib.numutils)

 	interpolate_bad_singletons() (in module cooltools.lib.numutils)

 	interpolate_expected() (in module cooltools.api.expected)

 	is_compatible_kernels() (in module cooltools.api.dotfinder)

 	is_symmetric() (in module cooltools.lib.numutils)

L

 	
 	lattice_pdist_frequencies() (in module cooltools.api.expected)

 	
 	list_to_colormap() (in module cooltools.lib.plotting)

 	logbin_expected() (in module cooltools.api.expected)

M

 	
 	MAD() (in module cooltools.lib.numutils)

 	make_bin_aligned_windows() (in module cooltools.api.snipping)

 	make_block_table() (in module cooltools.api.expected)

 	make_cooler_view() (in module cooltools.lib.common)

 	make_diag_table() (in module cooltools.api.expected)

 	make_diag_tables() (in module cooltools.api.expected)

 	mask_cooler_bad_bins() (in module cooltools.lib.common)

 	
 module

 	cooltools.api.coverage

 	cooltools.api.directionality

 	cooltools.api.dotfinder

 	cooltools.api.eigdecomp

 	cooltools.api.expected

 	cooltools.api.insulation

 	cooltools.api.saddle

 	cooltools.api.sample

 	cooltools.api.snipping

 	cooltools.api.virtual4c

 	cooltools.lib.common

 	cooltools.lib.numutils

 	cooltools.lib.peaks

 	cooltools.lib.plotting

 	cooltools.lib.schemas

N

 	
 	nans_inkernel_name() (in module cooltools.api.dotfinder)

 	
 	normalize_score() (in module cooltools.lib.numutils)

O

 	
 	ObsExpSnipper (class in cooltools.api.snipping)

 	
 OUT_PATH

 	cooltools-random-sample command line option

 	cooltools-rearrange command line option

P

 	
 	peakdet() (in module cooltools.lib.peaks)

 	per_region_smooth_cvd() (in module cooltools.api.expected)

 	
 	persistent_log_bins() (in module cooltools.lib.numutils)

 	pileup() (in module cooltools.api.snipping)

 	pool_decorator() (in module cooltools.lib.common)

R

 	
 	recommend_kernels() (in module cooltools.api.dotfinder)

 	
 	remove_good_singletons() (in module cooltools.lib.numutils)

 	robust_gauss_filter() (in module cooltools.lib.numutils)

S

 	
 	saddle() (in module cooltools.api.saddle)

 	saddle_strength() (in module cooltools.api.saddle)

 	saddleplot() (in module cooltools.api.saddle)

 	sample() (in module cooltools.api.sample)

 	sample_pixels_approx() (in module cooltools.api.sample)

 	sample_pixels_exact() (in module cooltools.api.sample)

 	score_tile() (in module cooltools.api.dotfinder)

 	scoring_and_extraction_step() (in module cooltools.api.dotfinder)

 	scoring_and_histogramming_step() (in module cooltools.api.dotfinder)

 	
 	select() (cooltools.api.snipping.CoolerSnipper method)

 	(cooltools.api.snipping.ExpectedSnipper method)

 	(cooltools.api.snipping.ObsExpSnipper method)

 	set_diag() (in module cooltools.lib.numutils)

 	slice_sorted() (in module cooltools.lib.numutils)

 	smooth() (in module cooltools.lib.numutils)

 	snip() (cooltools.api.snipping.CoolerSnipper method)

 	(cooltools.api.snipping.ExpectedSnipper method)

 	(cooltools.api.snipping.ObsExpSnipper method)

 	stochastic_sd() (in module cooltools.lib.numutils)

T

 	
 	tile_square_matrix() (in module cooltools.api.dotfinder)

 	
 TRACK_PATH

 	cooltools-saddle command line option

 	
 	trans_eig() (in module cooltools.api.eigdecomp)

V

 	
 	view_from_track() (in module cooltools.lib.common)

 	
 VIEWPOINT

 	cooltools-virtual4c command line option

 	
 	virtual4c() (in module cooltools.api.virtual4c)

W

 	
 	weighted_groupby_mean() (in module cooltools.lib.numutils)

 	
 	
 WINDOW

 	cooltools-insulation command line option

Z

 	
 	zoom_array() (in module cooltools.lib.numutils)

 examples

examples

Following the old adage that an example is worth a thousand docstrings, we created a set of notebooks that cover many typical Hi-C analyses using the open2c code ecosystem. For users who are new to Hi-C analysis, we recommend going through example notebooks in the following order:

	viz.ipynb [https://github.com/open2c/open2c_examples/blob/master/viz.ipynb]: how to load and visualize Hi-C data stored in coolers.

	contacts_vs_distance.ipynb [https://github.com/open2c/open2c_examples/blob/master/contacts_vs_distance.ipynb]: how to calculate contact frequency as a function of genomic distance– the most prominent feature in Hi-C maps

	insulation_and_boundaries.ipynb [https://github.com/open2c/open2c_examples/blob/master/insulation_and_boundaries.ipynb]: how to extract insulation profiles and call boundaries using insulation profile minima.

	pileup_CTCF.ipynb [https://github.com/open2c/open2c_examples/blob/master/pileup_CTCF.ipynb]: how to create avearge maps around genomic features like CTCF.

	compartments_and_saddles.ipynb [https://github.com/open2c/open2c_examples/blob/master/compartments_and_saddles.ipynb]: how to extract eigenvectors and create saddleplots reflecting A/B compartments.

Note that these notebooks currently focus on mammalian interphase Hi-C analysis, but are readily extendible to other organisms and cellular contexts.

Installation

Clone open2c_examples on your computer using git clone command, and checkout the recent version:

git clone https://github.com/open2c/open2c_examples
git checkout cooltools-0.5.0

Then navigate to the open2c_examples directory and use environment.yml file to create a conda environment open2c with the software packages required to run these notebooks:

export PIP_NO_CACHE_DIR=1
cd open2c_examples
conda env create -f environment.yml

Note that the environmental variable PIP_NO_CACHE_DIR is set, as this helped avoid numba and numpy version conflicts.

Activate the environment and launch jupyter:

conda activate open2c
jupyter lab

 P(s) curves

P(s) curves

P(s) from pairs, by strand orientation

[1]:

%matplotlib inline
import matplotlib.pyplot as plt
import seaborn as sns
import multiprocess as mp
import numpy as np
import pandas as pd
import pypairix
import bioframe
import cooltools

[2]:

mm9 = bioframe.fetch_chromsizes('mm9')
chromsizes = bioframe.fetch_chromsizes('mm9')
chromosomes = list(chromsizes.index)

[3]:

conditions = ['WT', 'dN']
binsize = 100000

pairs_paths = {
 'WT': 'data/UNTR_R1.nodups.pairs.gz',
 'dN': 'data/NIPBL_R1.nodups.pairs.gz'
}

long_names = {
 'WT': 'Wildtype',
 'dN': 'NipblKO',
}

pal = sns.color_palette('colorblind')
colors = {
 'WT': pal[0],
 'dN': pal[2],
}

[4]:

from cooltools.expected import compute_scaling
import bioframe.dask

[5]:

pairs_header = ['read_id', 'chrom1', 'pos1', 'chrom2', 'pos2', 'strand1', 'strand2', 'pair_type']
chrom = 'chr1'

df = bioframe.dask.read_pairix_block(
 pairs_paths['WT'],
 (chrom, chrom),
 names=pairs_header,
 chunk_level=0)

[6]:

df = df.compute()
print(len(df))
df.head()

4893134

[6]:

 	
 	read_id
 	chrom1
 	pos1
 	chrom2
 	pos2
 	strand1
 	strand2
 	pair_type

 	0
 	.
 	chr1
 	3000031
 	chr1
 	3002463
 	-
 	+
 	LL

 	1
 	.
 	chr1
 	3000031
 	chr1
 	64746728
 	-
 	+
 	LL

 	2
 	.
 	chr1
 	3000036
 	chr1
 	12271809
 	-
 	+
 	LL

 	3
 	.
 	chr1
 	3000042
 	chr1
 	3009611
 	-
 	+
 	LL

 	4
 	.
 	chr1
 	3000048
 	chr1
 	4637504
 	-
 	+
 	LL

[7]:

plt.figure(figsize=(12, 12))

dmin = 10
dmax = int(1e7)

orientations = [
 ('+', '-'),
 ('-', '+'),
 ('+', '+'),
 ('-', '-')
]

grouped = df.groupby(['strand1', 'strand2'])

for s1, s2 in orientations:
 group = grouped.get_group((s1, s2))

 dbins, obs, areas = compute_scaling(
 group,
 region1=[0, chromsizes[chrom]],
 region2=[0, chromsizes[chrom]],
 dmin=dmin,
 dmax=dmax)

 dmeans = np.sqrt(dbins[:-1] * dbins[1:])
 scaling = obs / areas
 plt.loglog(dmeans, scaling, label='{} {}'.format(s1, s2))

plt.xlabel(r'genomic separation s, bp')
plt.ylabel('pair frequency')
plt.legend()
plt.axvline(6000, c='k', ls='--')
plt.gca().set_aspect(1)
plt.title(f'WT rep1, {chrom}')

[7]:

<matplotlib.text.Text at 0x7feace921be0>

[image: ../_images/notebooks_old_01_scaling-curves_7_1.png]

[]:

[]:

[]:

This page was generated with nbsphinx [https://nbsphinx.readthedocs.io/] from /home/docs/checkouts/readthedocs.org/user_builds/cooltools/checkouts/latest/docs/notebooks_old/01_scaling-curves.ipynb [https://github.com/open2c/cooltools/blob/master//home/docs/checkouts/readthedocs.org/user_builds/cooltools/checkouts/latest/docs/notebooks_old/01_scaling-curves.ipynb]

 Expected models on binned contact maps

Expected models on binned contact maps

	For intrachromosomal arm regions: P(s) by diagonal

	For interchromosomal regions: Average contact frequency by block

[1]:

%matplotlib inline
import matplotlib.pyplot as plt
import matplotlib as mpl
import seaborn as sns
import multiprocess as mp
import numpy as np
import pandas as pd
import bioframe
import cooltools
import cooler

[2]:

mm9 = bioframe.fetch_chromsizes('mm9')
chromsizes = bioframe.fetch_chromsizes('mm9')
chromosomes = list(chromsizes.index)

[3]:

conditions = ['WT', 'T', 'dN']
binsize = 100000

cooler_paths = {
 'WT' : f'data/UNTR.{binsize}.cool',
 'T' : f'data/TAM.{binsize}.cool',
 'dN' : f'data/NIPBL.{binsize}.cool',
}
long_names = {
 'WT': 'Wildtype',
 'T' : 'TAM',
 'dN': 'NipblKO',
}
pal = sns.color_palette('colorblind')
colors = {
 'WT': pal[0],
 'T' : '#333333',
 'dN': pal[2],
}

clrs = {
 cond: cooler.Cooler(cooler_paths[cond]) for cond in conditions
}

[4]:

this cell takes a long time to run
from cooltools.expected import diagsum, blocksum_pairwise
supports = [(chrom, 0, chromsizes[chrom]) for chrom in chromosomes]

cis_exp = {}
trs_exp = {}

with mp.Pool() as pool:
 for cond in conditions:

 print(cond, 'cis')
 tables = diagsum(
 clrs[cond],
 supports,
 transforms={
 'balanced': lambda p: p['count'] * p['weight1'] * p['weight2'],
 },
 chunksize=10000000,
 ignore_diags=2,
 map=pool.map)

 cis_exp[cond] = pd.concat(
 [tables[support] for support in supports],
 keys=[support[0] for support in supports],
 names=['chrom'])
 cis_exp[cond]['balanced.avg'] = cis_exp[cond]['balanced.sum'] / cis_exp[cond]['n_valid']

 cis_exp[cond].to_csv(f'data/{long_names[cond]}.{binsize//1000}kb.expected.cis.tsv', sep='\t')

 print(cond, 'trans')
 records = blocksum_pairwise(
 clrs[cond],
 supports,
 transforms={
 'balanced': lambda p: p['count'] * p['weight1'] * p['weight2'],
 },
 chunksize=10000000,
 map=pool.map)

 trs_exp[cond] = pd.DataFrame(
 [{'chrom1': s1[0], 'chrom2': s2[0], **rec} for (s1, s2), rec in records.items()],
 columns=['chrom1', 'chrom2', 'n_valid', 'count.sum', 'balanced.sum'])

 trs_exp[cond].to_csv(f'data/{long_names[cond]}.{binsize//1000}kb.expected.trans.tsv', sep='\t', index=False)

WT cis
WT trans
T cis
T trans
dN cis
dN trans

[5]:

cis_exp['WT'].head()

[5]:

 	
 	
 	n_valid
 	count.sum
 	balanced.sum
 	balanced.avg

 	chrom
 	diag
 	
 	
 	
 	

 	chr1
 	0
 	18900
 	NaN
 	NaN
 	NaN

 	1
 	18652
 	NaN
 	NaN
 	NaN

 	2
 	18638
 	132754.0
 	301.561046
 	0.016180

 	3
 	18634
 	92489.0
 	208.895766
 	0.011210

 	4
 	18623
 	70473.0
 	159.212659
 	0.008549

[6]:

trs_exp['WT'].head()

[6]:

 	
 	chrom1
 	chrom2
 	n_valid
 	count.sum
 	balanced.sum

 	0
 	chr1
 	chr2
 	357714000
 	147693.0
 	338.795457

 	1
 	chr1
 	chr3
 	314220340
 	127220.0
 	309.070464

 	2
 	chr1
 	chr4
 	306122580
 	123733.0
 	290.960206

 	3
 	chr1
 	chr5
 	299987240
 	112388.0
 	264.008169

 	4
 	chr1
 	chr6
 	294360620
 	119053.0
 	280.474475

[7]:

stats = {}
for cond in conditions:
 n_cis = int(cis_exp[cond]['count.sum'].sum())
 n_trs = int(trs_exp[cond]['count.sum'].sum())
 stats[long_names[cond]] = {
 'cis': n_cis,
 'trans': n_trs,
 'total': n_cis + n_trs,
 'cis:trans': n_cis / n_trs,
 'cis:total': n_cis / (n_cis + n_trs)
 }
pd.DataFrame.from_dict(stats, orient='index')

[7]:

 	
 	cis
 	trans
 	total
 	cis:trans
 	cis:total

 	NipblKO
 	60644854
 	29374071
 	90018925
 	2.064571
 	0.673690

 	TAM
 	46889387
 	19725414
 	66614801
 	2.377105
 	0.703888

 	Wildtype
 	37717628
 	14296684
 	52014312
 	2.638208
 	0.725139

[8]:

sums = {}
n_valid = {}
scalings = {}
for cond in conditions:
 grouped = cis_exp[cond].groupby('diag')
 n_valid[cond] = grouped['n_valid'].sum().values
 sums[cond] = grouped['balanced.sum'].sum().values
 scalings[cond] = (sums[cond] / n_valid[cond])

/home/nezar/miniconda3/envs/py36/lib/python3.6/site-packages/ipykernel_launcher.py:8: RuntimeWarning: invalid value encountered in true_divide

[9]:

from cooltools.lib import numutils

def coarsen_geometric(sums, counts, n_bins=100):
 """Re-bin the expected sums into logarithmically growing bins.

 """
 dbins = numutils.logbins(1, len(sums), N=n_bins)
 spans = list(zip(dbins[:-1], dbins[1:]))
 s = np.array([np.nansum(sums[lo:hi]) for lo, hi in spans])
 n = np.array([np.nansum(counts[lo:hi]) for lo, hi in spans])
 return dbins, s / n

[13]:

gs = plt.GridSpec(nrows=2, ncols=1, height_ratios=[10, 2])
plt.figure(figsize=(8, 15))

SMOOTH = False

ax1 = plt.subplot(gs[0])
for i, cond in enumerate(conditions):

 ref_point = 200000 // binsize
 norm = 1 #scalings[cond][ref_point]

 # cis P(s)
 x = np.arange(0, len(scalings[cond]) * binsize, binsize)
 y = scalings[cond] / norm
 if SMOOTH:
 x, y = coarsen_geometric(sums[cond], n_valid[cond], 100)
 x *= binsize
 x = x[:-1]

 plt.plot(x, y,
 color=colors[cond],
 label=long_names[cond])

 # average trans levels
 for _, row in trs_exp[cond].iterrows():
 plt.axhline(
 (row['balanced.sum']/row['n_valid']) / norm,
 xmin=i/len(conditions),
 xmax=(i+1)/len(conditions),
 c=colors[cond],
 alpha=0.25)

plt.xscale('log')
plt.yscale('log')
plt.ylabel('P(s)')
plt.xlabel('separation, bp')
plt.legend()
plt.gca().set_aspect(1)
xlim = plt.xlim()

[image: ../_images/notebooks_old_02_expected_10_0.png]

[]:

This page was generated with nbsphinx [https://nbsphinx.readthedocs.io/] from /home/docs/checkouts/readthedocs.org/user_builds/cooltools/checkouts/latest/docs/notebooks_old/02_expected.ipynb [https://github.com/open2c/cooltools/blob/master//home/docs/checkouts/readthedocs.org/user_builds/cooltools/checkouts/latest/docs/notebooks_old/02_expected.ipynb]

 Compartmentalization via eigendecomposition

Compartmentalization via eigendecomposition

[1]:

%matplotlib inline
from matplotlib.gridspec import GridSpec
import matplotlib.pyplot as plt
import matplotlib as mpl
import seaborn as sns
mpl.style.use('seaborn-white')

import multiprocess as mp
import numpy as np
import pandas as pd
import bioframe
import cooltools
import cooler

[2]:

mm9 = bioframe.fetch_chromsizes('mm9')
chromsizes = bioframe.fetch_chromsizes('mm9')
chromosomes = list(chromsizes.index)

[3]:

conditions = ['WT', 'T', 'dN']
binsize = 100000

cooler_paths = {
 'WT' : f'data/UNTR.{binsize}.cool',
 'T' : f'data/TAM.{binsize}.cool',
 'dN' : f'data/NIPBL.{binsize}.cool',
}
long_names = {
 'WT': 'Wildtype',
 'T' : 'TAM',
 'dN': 'NipblKO',
}
pal = sns.color_palette('colorblind')
colors = {
 'WT': pal[0],
 'T' : '#333333',
 'dN': pal[2],
}

clrs = {
 cond: cooler.Cooler(cooler_paths[cond]) for cond in conditions
}

Get binned GC-content (proxy for the “A” phase)

[4]:

bins = cooler.binnify(mm9, binsize)
fasta_records = bioframe.load_fasta('data/mm9.fa')
bins['GC'] = bioframe.tools.frac_gc(bins, fasta_records)
bins.head()

[4]:

 	
 	chrom
 	start
 	end
 	GC

 	0
 	chr1
 	0
 	100000
 	NaN

 	1
 	chr1
 	100000
 	200000
 	NaN

 	2
 	chr1
 	200000
 	300000
 	NaN

 	3
 	chr1
 	300000
 	400000
 	NaN

 	4
 	chr1
 	400000
 	500000
 	NaN

[5]:

_=plt.hist(bins['GC'].dropna(), range=(0.2, 0.6), bins=100)
plt.xlabel('GC content')
plt.title(f'mm9, {binsize//1000}kb bins')

[5]:

<matplotlib.text.Text at 0x7f49199284e0>

[image: ../_images/notebooks_old_03_eigendecomposition_6_1.png]

Compute eigenvectors

[6]:

from cooltools.eigdecomp import cooler_cis_eig

lam = {}
eigs = {}

for cond in conditions:
 lam[cond], eigs[cond] = cooler_cis_eig(
 clrs[cond],
 bins,
 n_eigs=3,
 phasing_track_col='GC',
 sort_metric='var_explained')

 # Save text files
 lam[cond].to_csv(f'data/{long_names[cond]}.{binsize//1000}kb.eigs.cis.lam.txt', sep='\t')
 eigs[cond].to_csv(f'data/{long_names[cond]}.{binsize//1000}kb.eigs.cis.vecs.txt', sep='\t', index=False)

 # Save bigwig track
 bioframe.to_bigwig(eigs[cond], mm9, f'data/{long_names[cond]}.{binsize//1000}kb.eigs.cis.vecs.E1.bw', 'E1')

bedGraphToBigWig /tmp/tmp_k979fat.bg /tmp/tmpdsfw26i1.chrom.sizes data/Wildtype.100kb.eigs.cis.vecs.E1.bw
bedGraphToBigWig /tmp/tmpvygdsjvy.bg /tmp/tmprf3fi3gj.chrom.sizes data/TAM.100kb.eigs.cis.vecs.E1.bw
bedGraphToBigWig /tmp/tmpibx6m9g8.bg /tmp/tmpblzcmzh9.chrom.sizes data/NipblKO.100kb.eigs.cis.vecs.E1.bw

[8]:

from scipy.stats import rankdata

gs = plt.GridSpec(nrows=1, ncols=2)
plt.figure(figsize=(16, 6))
condx, condy = 'WT', 'dN'

plt.subplot(gs[0])
lo, hi = -2 , 2
plt.hexbin(
 eigs[condx]['E1'],
 eigs[condy]['E1'],
 vmax=50,
)
plt.xlabel('E1 ' + long_names[condx])
plt.ylabel('E1 ' + long_names[condy])
plt.gca().set_aspect(1)
plt.xlim(lo, hi)
plt.ylim(lo, hi)
plt.axvline(0, c='b', lw=0.5, ls='--')
plt.axhline(0, c='b', lw=0.5, ls='--')
plt.plot([lo, hi], [lo, hi], c='b', lw=0.5, ls='--')
plt.colorbar(shrink=0.6)

plt.subplot(gs[1])
mask = eigs[condx]['E1'].notnull() & eigs[condy]['E1'].notnull()
vx = eigs[condx]['E1'].loc[mask].values
vy = eigs[condy]['E1'].loc[mask].values
lo, hi = 0 , len(vx)

plt.hexbin(
 rankdata(vx),
 rankdata(vy),
 vmax=20,
)
plt.xlabel('E1 rank ' + long_names[condx])
plt.ylabel('E1 rank ' + long_names[condy])
plt.gca().set_aspect(1)
plt.xlim(lo, hi)
plt.ylim(lo, hi)
plt.plot([lo, hi], [lo, hi], c='b', lw=0.5, ls='--')
plt.colorbar(shrink=0.6)

[8]:

<matplotlib.colorbar.Colorbar at 0x7f4915fcccf8>

[image: ../_images/notebooks_old_03_eigendecomposition_9_1.png]

The “saddle” plot

[12]:

from cooltools import saddle

QUANTILE_BINNING = True

binedges = {}
digitized = {}
hist = {}
sums = {}
counts = {}
saddledata = {}

gs = plt.GridSpec(nrows=1, ncols=2)
fig = plt.figure(figsize=(12, 6))
histbins = 30

for i, cond in enumerate(['WT', 'dN']):
 exp = pd.read_table(f'data/{long_names[cond]}.{binsize//1000}kb.expected.cis.tsv')
 eig = pd.read_table(f'data/{long_names[cond]}.{binsize//1000}kb.eigs.cis.vecs.txt')

 # Determine how to bin the range of the E1 signal
 if QUANTILE_BINNING:
 q_binedges = np.linspace(0, 1, histbins)
 binedges[cond] = saddle.quantile(eig['E1'], q_binedges)
 else:
 qlo, qhi = saddle.quantile(eig['E1'], [0.02, 0.98]) # trim outliers
 binedges[cond] = np.linspace(qlo, qhi, histbins)

 # Digitize the signal into integers
 digitized[cond], hist[cond] = saddle.digitize_track(
 binedges[cond],
 track=(eig, 'E1'))

 # Construct a function that fetches and calculates observed/expected
 getmatrix = saddle.make_cis_obsexp_fetcher(clrs[cond], (exp, 'balanced.avg'))

 # Build the saddle histogram
 sums[cond], counts[cond] = saddle.make_saddle(
 getmatrix,
 binedges[cond],
 (digitized[cond], 'E1.d'),
 contact_type='cis')
 saddledata[cond] = sums[cond] / counts[cond]

 # Make the saddle plot
 g = saddle.saddleplot(
 q_binedges if QUANTILE_BINNING else binedges[cond],
 hist[cond],
 np.log10(saddledata[cond]),
 color=colors[cond],
 heatmap_kws={'vmin': -1, 'vmax': 1},
 fig=fig, subplot_spec=gs[i])

/net/proteome/home/nezar/local/devel/cooltools/cooltools/saddle.py:109: RuntimeWarning: invalid value encountered in true_divide
 toeplitz(expected[chrom])
/home/nezar/miniconda3/envs/py36/lib/python3.6/site-packages/ipykernel_launcher.py:42: RuntimeWarning: invalid value encountered in true_divide
/home/nezar/miniconda3/envs/py36/lib/python3.6/site-packages/ipykernel_launcher.py:48: RuntimeWarning: divide by zero encountered in log10

[image: ../_images/notebooks_old_03_eigendecomposition_11_1.png]

[16]:

strength = {
 cond: saddle.saddle_strength(sums[cond], counts[cond])
 for cond in ['WT', 'dN']
}

gs = plt.GridSpec(nrows=1, ncols=2)
plt.figure(figsize=(14, 6))

plt.subplot(gs[0])
x = np.arange(histbins + 2)
for cond in ['WT', 'dN']:
 plt.step(x[:-1], strength[cond], where='pre', color=colors[cond], label=long_names[cond])

plt.legend()
plt.xlabel('extent')
plt.ylabel('(AA + BB) / (AB + BA)')
plt.title('saddle strength profile')
plt.axhline(0, c='grey', ls='--', lw=1)
plt.xlim(0, len(x)//2)

plt.subplot(gs[1])
plt.step(x[:-1], strength['dN'] / strength['WT'], where='pre', c='k')
plt.axhline(1, c='grey', ls='--', lw=1)
plt.xlim(0, len(x)//2)
plt.xlabel('extent')
plt.ylabel('enrichment')
plt.title('NipblKO / Wildtype')

/net/proteome/home/nezar/local/devel/cooltools/cooltools/saddle.py:443: RuntimeWarning: invalid value encountered in double_scalars
 intra = intra_sum / intra_count
/net/proteome/home/nezar/local/devel/cooltools/cooltools/saddle.py:447: RuntimeWarning: invalid value encountered in double_scalars
 inter = inter_sum / inter_count
/home/nezar/miniconda3/envs/py36/lib/python3.6/site-packages/ipykernel_launcher.py:22: RuntimeWarning: invalid value encountered in true_divide

[16]:

<matplotlib.text.Text at 0x7f490f606630>

[image: ../_images/notebooks_old_03_eigendecomposition_12_2.png]

[]:

This page was generated with nbsphinx [https://nbsphinx.readthedocs.io/] from /home/docs/checkouts/readthedocs.org/user_builds/cooltools/checkouts/latest/docs/notebooks_old/03_eigendecomposition.ipynb [https://github.com/open2c/cooltools/blob/master//home/docs/checkouts/readthedocs.org/user_builds/cooltools/checkouts/latest/docs/notebooks_old/03_eigendecomposition.ipynb]

 Saddle plot

Saddle plot

[1]:

import numpy as np
import matplotlib.pyplot as plt

%matplotlib inline

import bioframe

import cooler

import cooltools
import cooltools.eigdecomp
import cooltools.expected
import cooltools.saddle

[3]:

download a Hi-C dataset from Schwarzer et.al. "Two independent modes of chromosome organization are revealed by cohesin removal", 2017

!wget ftp://ftp.ncbi.nlm.nih.gov/geo/series/GSE93nnn/GSE93431/suppl/GSE93431_NIPBL.200kb.cool.HDF5.gz -O /tmp/GSE93431_NIPBL.200kb.cool.gz
!gunzip -f /tmp/GSE93431_NIPBL.200kb.cool.gz

--2019-10-30 15:16:16-- ftp://ftp.ncbi.nlm.nih.gov/geo/series/GSE93nnn/GSE93431/suppl/GSE93431_NIPBL.200kb.cool.HDF5.gz
 => ‘/tmp/GSE93431_NIPBL.200kb.cool.gz’
Resolving ftp.ncbi.nlm.nih.gov (ftp.ncbi.nlm.nih.gov)... 130.14.250.7, 2607:f220:41e:250::13
Connecting to ftp.ncbi.nlm.nih.gov (ftp.ncbi.nlm.nih.gov)|130.14.250.7|:21... connected.
Logging in as anonymous ... Logged in!
==> SYST ... done. ==> PWD ... done.
==> TYPE I ... done. ==> CWD (1) /geo/series/GSE93nnn/GSE93431/suppl ... done.
==> SIZE GSE93431_NIPBL.200kb.cool.HDF5.gz ... 37884973
==> PASV ... done. ==> RETR GSE93431_NIPBL.200kb.cool.HDF5.gz ... done.
Length: 37884973 (36M) (unauthoritative)

GSE93431_NIPBL.200k 100%[===================>] 36.13M 14.8MB/s in 2.4s

2019-10-30 15:16:19 (14.8 MB/s) - ‘/tmp/GSE93431_NIPBL.200kb.cool.gz’ saved [37884973]

[4]:

coolpath = '/tmp/GSE93431_NIPBL.200kb.cool'
c = cooler.Cooler(coolpath)

[5]:

Define continuous genomic regions for calculations of contact frequency decay
with distance (aka "expected").
Typically, we calculate expected separately for each chromosomal arm because
centromeres additionally suppress contacts accross themselves.
In mice, chromosomes are acrocentric and expected can be calculated
for whole chromosomes.

regions = [(chrom, 0, c.chromsizes[chrom]) for chrom in c.chromnames]

[6]:

Download and compute gene count per genomic bin

bins = c.bins()[:]
genecov = bioframe.tools.frac_gene_coverage(bins, 'mm9')

[7]:

Perform eigenvector decomposition in cis, sorting and flipping eigenvectors
according to their correlation with the number of genes in each bin.

cis_eigs = cooltools.eigdecomp.cooler_cis_eig(
 c,
 genecov,
 regions=None,
 n_eigs=5,
 phasing_track_col='gene_count')

[8]:

Plot eigenvectors to confirm successful eigenvector decomposition.

plt.figure(
 figsize=(15,2)
)

loc_eig = bioframe.slice_bedframe(cis_eigs[1], 'chr1:10M-60M')
plt.plot(
 loc_eig['start'],
 loc_eig['E1']
)
plt.axhline(0,ls='--',lw=0.5,color='gray')
plt.ylabel('E1')
plt.xlabel('chr1 position, bp')

[8]:

Text(0.5, 0, 'chr1 position, bp')

[image: ../_images/notebooks_old_04_saddle-plots_7_1.png]

[9]:

Digitize eigenvectors, i.e. group genomic bins into
equisized groups according to their eigenvector rank.

Q_LO = 0.025 # ignore 2.5% of genomic bins with the lowest E1 values
Q_HI = 0.975 # ignore 2.5% of genomic bins with the highest E1 values
N_GROUPS = 38 # divide remaining 95% of the genome into 38 equisized groups, 2.5% each
q_edges = np.linspace(Q_LO, Q_HI, N_GROUPS+1)

Filter track used for grouping genomic bins based on bins filtered out in Hi-C balancing weights
Doesn't do anything with eigenvectors from the same Hi-C data (hence commented out here),
but important for external data, such as ChIP-seq tracks
#eig = cooltools.saddle.mask_bad_bins((cis_eigs[1], 'E1'), (c.bins()[:], 'weight'))

Calculate the lower and the upper values of E1 in each of 38 groups.
group_E1_bounds = cooltools.saddle.quantile(eig['E1'], q_edges)

Assign the group to each genomic bin according to its E1, i.e. "digitize" E1.
digitized, hist = cooltools.saddle.digitize_track(
 group_E1_bounds,
 track=(eig, 'E1'),
)

[10]:

Plot the digitized E1 to confirm that digitization was successful.

plt.figure(
 figsize=(15,3)
)

loc_eig = bioframe.slice_bedframe(digitized, 'chr1:10M-60M')
plt.plot(
 loc_eig['start'],
 loc_eig['E1.d']
)
plt.axhline(0,ls='--',lw=0.5,color='gray')
plt.ylabel('E1, digitized')
plt.xlabel('chr1 position, bp')

[10]:

Text(0.5, 0, 'chr1 position, bp')

[image: ../_images/notebooks_old_04_saddle-plots_9_1.png]

[11]:

Calculate the decay of contact frequency with distance (i.e. "expected")
for each chromosome.

expected = cooltools.expected.cis_expected(c, regions, use_dask=True)

Make a function that returns observed/expected dense matrix of an arbitrary
region of the Hi-C map.
getmatrix = cooltools.saddle.make_cis_obsexp_fetcher(c, (expected, 'balanced.avg'))

[12]:

Compute the saddle plot, i.e. the average observed/expected between genomic
ins as a function of their digitized E1.

S, C = cooltools.saddle.make_saddle(
 getmatrix,
 group_E1_bounds,
 (digitized, 'E1' + '.d'),
 contact_type='cis')

/home/s1529682/Projects/cooltools/cooltools/saddle.py:144: RuntimeWarning: invalid value encountered in true_divide
 return obs_mat/exp_mat
/home/s1529682/Projects/cooltools/cooltools/saddle.py:144: RuntimeWarning: divide by zero encountered in true_divide
 return obs_mat/exp_mat

[13]:

plt.imshow(
 np.log2(S / C)[1:-1, 1:-1],
 cmap='coolwarm',
 vmin=-1,
 vmax=1,

)
plt.colorbar(label='log2 obs/exp')

[13]:

<matplotlib.colorbar.Colorbar at 0x7fdb7cdb6d68>

[image: ../_images/notebooks_old_04_saddle-plots_12_1.png]

[]:

This page was generated with nbsphinx [https://nbsphinx.readthedocs.io/] from /home/docs/checkouts/readthedocs.org/user_builds/cooltools/checkouts/latest/docs/notebooks_old/04_saddle-plots.ipynb [https://github.com/open2c/cooltools/blob/master//home/docs/checkouts/readthedocs.org/user_builds/cooltools/checkouts/latest/docs/notebooks_old/04_saddle-plots.ipynb]

 Contact-insulating loci

Contact-insulating loci

[1]:

%matplotlib inline
from matplotlib.gridspec import GridSpec
import matplotlib.pyplot as plt
import matplotlib as mpl
import seaborn as sns
mpl.style.use('seaborn-white')
import multiprocess as mp
import numpy as np
import pandas as pd
import bioframe
import cooltools
import cooler
import bbi

[2]:

mm9 = bioframe.fetch_chromsizes('mm9')
chromsizes = bioframe.fetch_chromsizes('mm9')
chromosomes = list(chromsizes.index)

[3]:

conditions = ['WT', 'T', 'dN']
binsize = 100000

cooler_paths = {
 'WT' : f'data/UNTR.{binsize}.cool',
 'T' : f'data/TAM.{binsize}.cool',
 'dN' : f'data/NIPBL.{binsize}.cool',
}
long_names = {
 'WT': 'Wildtype',
 'T' : 'TAM',
 'dN': 'NipblKO',
}
pal = sns.color_palette('colorblind')
colors = {
 'WT': pal[0],
 'T' : '#333333',
 'dN': pal[2],
}

clrs = {
 cond: cooler.Cooler(cooler_paths[cond]) for cond in conditions
}

[5]:

from cooltools.insulation import find_insulating_boundaries
from cooltools.directionality import directionality

window_bp = binsize * 5

insul = {}
direc = {}

for cond in conditions:
 # Diamond insulation score
 insul[cond] = find_insulating_boundaries(
 clrs[cond],
 balance='weight',
 window_bp=window_bp,
 min_dist_bad_bin=2,
)
 insul[cond].to_csv(f'data/{long_names[cond]}.{binsize//1000}kb.insul_{window_bp}.tsv', sep='\t')
 bioframe.to_bigwig(insul[cond], mm9,
 f'data/{long_names[cond]}.{binsize//1000}kb.insul_score_{window_bp}.bw',
 f'log2_insulation_score_{window_bp}')
 bioframe.to_bigwig(insul[cond], mm9,
 f'data/{long_names[cond]}.{binsize//1000}kb.insul_pp_{window_bp}.bw',
 f'boundary_strength_{window_bp}')

 # Directionality Index
 direc[cond] = directionality(
 clrs[cond],
 window_bp=window_bp,
 min_dist_bad_bin=2,
)
 direc[cond].to_csv(f'data/{long_names[cond]}.{binsize//1000}kb.direc_{window_bp}.tsv', sep='\t')
 bioframe.to_bigwig(direc[cond], mm9,
 f'data/{long_names[cond]}.{binsize//1000}kb.direc_index_{window_bp}.bw',
 f'directionality_index_{window_bp}')
 bioframe.to_bigwig(direc[cond], mm9,
 f'data/{long_names[cond]}.{binsize//1000}kb.direc_ratio_{window_bp}.bw',
 f'directionality_ratio_{window_bp}')

bedGraphToBigWig /tmp/tmp42su03hm.bg /tmp/tmp92cvxkk5.chrom.sizes data/Wildtype.100kb.insul_score_500000.bw
bedGraphToBigWig /tmp/tmp_31j5aq1.bg /tmp/tmp9hwerl3g.chrom.sizes data/Wildtype.100kb.insul_pp_500000.bw
bedGraphToBigWig /tmp/tmpn9r_qco3.bg /tmp/tmph4y0vmwe.chrom.sizes data/Wildtype.100kb.direc_index_500000.bw
bedGraphToBigWig /tmp/tmp82lu15mp.bg /tmp/tmph8h7q9d0.chrom.sizes data/Wildtype.100kb.direc_ratio_500000.bw
bedGraphToBigWig /tmp/tmp5smdg3du.bg /tmp/tmp2dohdna7.chrom.sizes data/TAM.100kb.insul_score_500000.bw
bedGraphToBigWig /tmp/tmp5wrrnnhk.bg /tmp/tmpcl4me291.chrom.sizes data/TAM.100kb.insul_pp_500000.bw
bedGraphToBigWig /tmp/tmpfwt33lb5.bg /tmp/tmplwlvyrpy.chrom.sizes data/TAM.100kb.direc_index_500000.bw
bedGraphToBigWig /tmp/tmppgw6jm38.bg /tmp/tmpganyga0r.chrom.sizes data/TAM.100kb.direc_ratio_500000.bw
bedGraphToBigWig /tmp/tmpdq9d_neu.bg /tmp/tmp5ztr97ks.chrom.sizes data/NipblKO.100kb.insul_score_500000.bw
bedGraphToBigWig /tmp/tmpebp9f5or.bg /tmp/tmpgz97vez6.chrom.sizes data/NipblKO.100kb.insul_pp_500000.bw
bedGraphToBigWig /tmp/tmpgsq9xqy4.bg /tmp/tmpg4k8w6ww.chrom.sizes data/NipblKO.100kb.direc_index_500000.bw
bedGraphToBigWig /tmp/tmp5gbxsokb.bg /tmp/tmpf00sut9s.chrom.sizes data/NipblKO.100kb.direc_ratio_500000.bw

[6]:

gs = plt.GridSpec(nrows=1, ncols=2)
plt.figure(figsize=(8*2, 8))

binedges = np.linspace(-2.5, 2.5, 60)
plt.subplot(gs[0])
for cond in conditions:
 x = insul[cond][f'log2_insulation_score_{window_bp}'].values
 plt.hist(x[~np.isnan(x)],
 bins=binedges,
 histtype='step',
 lw=2,
 label=long_names[cond],
 color=colors[cond])
plt.axvline(0, c='k', ls='--')
plt.legend()
plt.title(f'log2(insul) @{binsize//1000}kb ; window={window_bp//1000}kb')

plt.subplot(gs[1])
binedges = np.linspace(-3, 1, 45)
for cond in conditions[::-1]:
 x = insul[cond][f'boundary_strength_{window_bp}'].apply(np.log10).values
 plt.hist(x[~np.isnan(x)],
 bins=binedges,
 histtype='step',
 lw=2,
 label=long_names[cond],
 color=colors[cond])
plt.axvline(0, c='k', ls='--')
plt.legend()
plt.title(f'log10(peak prom) @{binsize//1000}kb ; window={window_bp//1000}kb')

[6]:

<matplotlib.text.Text at 0x7fa89cb1b9b0>

[image: ../_images/notebooks_old_05_insulation-score_5_1.png]

[7]:

gs = plt.GridSpec(nrows=2, ncols=2)
plt.figure(figsize=(8*2, 8*2))

for i, cond in enumerate(conditions):
 plt.subplot(gs[i])
 plt.scatter(
 insul[cond][f'log2_insulation_score_{window_bp}'].values,
 np.log10(insul[cond][f'boundary_strength_{window_bp}']).values,
 s=4,
 edgecolor='k',
 facecolor='none',
 alpha=0.1
)
 plt.title(long_names[cond])
 plt.xlabel('log2 insul')
 plt.ylabel('log10 peak prom')

 plt.xlim(-3, 3)
 plt.ylim(-4, 1.5)

[image: ../_images/notebooks_old_05_insulation-score_6_0.png]

[8]:

gs = GridSpec(nrows=2, ncols=2)

for i, (condx, condy) in enumerate([('WT', 'T'), ('WT', 'dN')]):

 plt.figure(figsize=(2 * 6, 2 * 6))

 score = f'log2_insulation_score_{window_bp}'
 plt.subplot(gs[i, 0])
 plt.hexbin(
 insul[condx][score],
 insul[condy][score],
 extent=(-2, 2, -2, 2),
 vmin=0,
 vmax=150,
 cmap=sns.blend_palette(['w', 'orange', 'r', 'k'], as_cmap=True),
 alpha=0.6,
 rasterized=True
)
 plt.plot([-2, 2], [-2, 2], c='b', ls='--', lw=0.5)
 plt.axvline(0, c='b', lw=0.5, ls='--')
 plt.axhline(0, c='b', lw=0.5, ls='--')
 plt.gca().set_aspect(1)
 plt.colorbar(shrink=0.8)
 plt.xlabel(long_names[condx])
 plt.ylabel(long_names[condy])
 plt.title(score)

 score = f'directionality_index_{window_bp}'
 plt.subplot(gs[i, 1])
 plt.hexbin(
 direc[condx][score],
 direc[condy][score],
 extent=(-0.25, 0.25, -0.25, 0.25),
 vmin=0,
 vmax=15,
 cmap=sns.blend_palette(['w', 'orange', 'r', 'k'], as_cmap=True),
 alpha=0.6,
 rasterized=True
)
 plt.plot([-0.25, 0.25], [-0.25, 0.25], c='b', ls='--', lw=0.5)
 plt.axvline(0, c='b', lw=0.5, ls='--')
 plt.axhline(0, c='b', lw=0.5, ls='--')
 plt.gca().set_aspect(1)
 plt.colorbar(shrink=0.8)
 plt.xlabel(long_names[condx])
 plt.ylabel(long_names[condy])
 plt.title(score)

[image: ../_images/notebooks_old_05_insulation-score_7_0.png]

[image: ../_images/notebooks_old_05_insulation-score_7_1.png]

[9]:

peaks = {}
pscore = f'boundary_strength_{window_bp}'
cols = ['chrom', 'start', 'end', pscore]
for cond in conditions:
 peaks[cond] = (
 insul[cond].dropna(subset=[pscore])[cols]
 .sort_values(pscore, ascending=False) # peaks!
)
wt_peaks = peaks['WT']
len(peaks['WT']), len(peaks['T']), len(peaks['dN'])

[9]:

(3457, 3537, 3968)

[10]:

stacks = {}
nbins = 2000
for i, cond in enumerate(conditions):
 mids = (wt_peaks['start'] + wt_peaks['end']) // 2
 flank = 1000000
 bwfile = f'data/{long_names[cond]}.100kb.insul_score_500000.bw'
 #bwfile = f'data/{long_names[cond]}.100kb.direc_ratio_500000.bw'
 #bwfile = f'data/{long_names[cond]}.100kb.eigs.cis.vecs.E1.bw'
 stacks[cond] = bbi.stackup(bwfile, wt_peaks['chrom'], mids - flank, mids + flank, bins=nbins)

gs = GridSpec(nrows=3, ncols=len(conditions),
 height_ratios=[15, 2, 0.5],
 hspace=0)

plt.figure(figsize=(3*len(conditions), 10))

X = stacks['WT']
idx = np.argsort(X[:, X.shape[1]//2])
x = np.linspace(-flank/1e6, flank/1e6, nbins)
cmap = plt.cm.get_cmap('coolwarm')
cmap.set_bad('#777777')
im_opts = dict(
 vmin=-0.5,
 vmax=0.5,
 extent=[-flank/1e6, flank/1e6, len(wt_peaks), 0],
 cmap=cmap
)

for i, name in enumerate(stacks):
 # heatmap
 ax = ax1 = plt.subplot(gs[0, i])
 X = stacks[name]
 img = ax.matshow(X[idx, :], **im_opts, rasterized=True)
 ax.axvline(0, c='grey', lw=0.5)
 ax.grid('off')
 ax.set_aspect('auto')
 ax.set_title(long_names[name])
 if i > 0:
 ax.yaxis.set_visible(False)

 # summary
 ax = plt.subplot(gs[1, i], sharex=ax1)
 ax.axhline(0, c='#777777', lw=1, ls='--')
 ax.plot(x, np.nanmean(stacks[name], axis=0), c='k', lw=2)
 ax.set_xlim(-flank/1e6, flank/1e6)
 ax.xaxis.set_visible(False)
 ax.set_ylim(-0.5, 0.5)
 if i > 0:
 ax.yaxis.set_visible(False)

 # color bar
 cax = plt.subplot(gs[2, i])
 cb = plt.colorbar(img, cax=cax, orientation='horizontal')
 cb.locator = mpl.ticker.MaxNLocator(nbins=3)
 cb.update_ticks()

[image: ../_images/notebooks_old_05_insulation-score_9_0.png]

[11]:

stacks = {}
nbins = 2000
for i, cond in enumerate(conditions):
 mids = (wt_peaks['start'] + wt_peaks['end']) // 2
 flank = 1000000
 bwfile = f'data/{long_names[cond]}.100kb.direc_ratio_500000.bw'
 stacks[cond] = bbi.stackup(bwfile, wt_peaks['chrom'], mids - flank, mids + flank, bins=nbins)

gs = GridSpec(nrows=3, ncols=len(conditions),
 height_ratios=[15, 2, 0.5],
 hspace=0)

plt.figure(figsize=(3*len(conditions), 10))

X = stacks['WT']
idx = np.argsort(X[:, X.shape[1]//2])
x = np.linspace(-flank/1e6, flank/1e6, nbins)
cmap = plt.cm.get_cmap('coolwarm')
cmap.set_bad('#777777')
im_opts = dict(
 vmin=-0.5,
 vmax=0.5,
 extent=[-flank/1e6, flank/1e6, len(wt_peaks), 0],
 cmap=cmap
)

for i, name in enumerate(stacks):
 # heatmap
 ax = ax1 = plt.subplot(gs[0, i])
 X = stacks[name]
 img = ax.matshow(X[idx, :], **im_opts, rasterized=True)
 ax.axvline(0, c='grey', lw=0.5)
 ax.grid('off')
 ax.set_aspect('auto')
 ax.set_title(long_names[name])
 if i > 0:
 ax.yaxis.set_visible(False)

 # summary
 ax = plt.subplot(gs[1, i], sharex=ax1)
 ax.axhline(0, c='#777777', lw=1, ls='--')
 ax.plot(x, np.nanmean(stacks[name], axis=0), c='k', lw=2)
 ax.set_xlim(-flank/1e6, flank/1e6)
 ax.xaxis.set_visible(False)
 ax.set_ylim(-0.5, 0.5)
 if i > 0:
 ax.yaxis.set_visible(False)

 # color bar
 cax = plt.subplot(gs[2, i])
 cb = plt.colorbar(img, cax=cax, orientation='horizontal')
 cb.locator = mpl.ticker.MaxNLocator(nbins=3)
 cb.update_ticks()

[image: ../_images/notebooks_old_05_insulation-score_10_0.png]

[]:

[]:

This page was generated with nbsphinx [https://nbsphinx.readthedocs.io/] from /home/docs/checkouts/readthedocs.org/user_builds/cooltools/checkouts/latest/docs/notebooks_old/05_insulation-score.ipynb [https://github.com/open2c/cooltools/blob/master//home/docs/checkouts/readthedocs.org/user_builds/cooltools/checkouts/latest/docs/notebooks_old/05_insulation-score.ipynb]

 Behold the Mighty Pileup

Behold the Mighty Pileup

[4]:

%matplotlib inline
from matplotlib.gridspec import GridSpec
import matplotlib.pyplot as plt
import matplotlib as mpl
import seaborn as sns
mpl.style.use('seaborn-white')
import multiprocess as mp
import numpy as np
import pandas as pd
import bioframe
import cooltools
import cooler
import bbi

[2]:

mm9 = bioframe.fetch_chromsizes('mm9')
chromsizes = bioframe.fetch_chromsizes('mm9')
chromosomes = list(chromsizes.index)

[13]:

conditions = ['WT', 'dN']
binsize = 10000

cooler_paths = {
 'WT' : f'data/UNTR.{binsize}.cool',
 'T' : f'data/TAM.{binsize}.cool',
 'dN' : f'data/NIPBL.{binsize}.cool',
}
long_names = {
 'WT': 'Wildtype',
 'T' : 'TAM',
 'dN': 'NipblKO',
}
pal = sns.color_palette('colorblind')
colors = {
 'WT': pal[0],
 'T' : '#333333',
 'dN': pal[2],
}

clrs = {
 cond: cooler.Cooler(cooler_paths[cond]) for cond in conditions
}

Single landmark pileup

[14]:

from cooltools import snipping

[15]:

ctcf = pd.read_table('data/CtcfCtrl.mm9__VS__InputCtrl.mm9.narrowPeak_with_motif.txt.gz')
ctcf.head()

[15]:

 	
 	chrom
 	start
 	end
 	name
 	score
 	strand
 	fc
 	-log10p
 	-log10q
 	relSummit
 	chrom_m
 	start_m
 	end_m
 	name_m
 	score_m
 	strand_m
 	pval_m

 	0
 	chr14
 	73909345
 	73910139
 	Peak_1
 	2864
 	.
 	66.97627
 	286.44055
 	277.00751
 	386
 	chr14
 	73909703
 	73909716
 	CTCF_mouse
 	12.8061
 	-
 	1.610000e-05

 	1
 	chr8
 	73292691
 	73293764
 	Peak_10
 	2288
 	.
 	59.05101
 	228.89639
 	222.17598
 	738
 	chr8
 	73293454
 	73293467
 	CTCF_mouse
 	14.2242
 	+
 	6.080000e-06

 	2
 	chr10
 	99078331
 	99079198
 	Peak_100
 	1567
 	.
 	40.02444
 	156.79012
 	151.30066
 	303
 	chr10
 	99078650
 	99078663
 	CTCF_mouse
 	19.7758
 	+
 	6.020000e-08

 	3
 	chr19
 	44437901
 	44438397
 	Peak_1000
 	741
 	.
 	20.84388
 	74.12866
 	69.69677
 	273
 	chr19
 	44438190
 	44438203
 	CTCF_mouse
 	15.1212
 	-
 	3.280000e-06

 	4
 	chr1
 	145853760
 	145854152
 	Peak_10000
 	355
 	.
 	12.38549
 	35.59266
 	32.22501
 	189
 	chr1
 	145853924
 	145853937
 	CTCF_mouse
 	17.6242
 	+
 	3.710000e-07

[16]:

sites = ctcf.sort_values('fc', ascending=False).iloc[:1000]
sites.head()

[16]:

 	
 	chrom
 	start
 	end
 	name
 	score
 	strand
 	fc
 	-log10p
 	-log10q
 	relSummit
 	chrom_m
 	start_m
 	end_m
 	name_m
 	score_m
 	strand_m
 	pval_m

 	39612
 	chr2
 	28440591
 	28441124
 	Peak_7
 	2444
 	.
 	67.20400
 	244.48576
 	237.52400
 	289
 	chr2
 	28440889
 	28440902
 	CTCF_mouse
 	17.1879
 	+
 	5.530000e-07

 	0
 	chr14
 	73909345
 	73910139
 	Peak_1
 	2864
 	.
 	66.97627
 	286.44055
 	277.00751
 	386
 	chr14
 	73909703
 	73909716
 	CTCF_mouse
 	12.8061
 	-
 	1.610000e-05

 	8403
 	chr12
 	85930537
 	85931240
 	Peak_18
 	2221
 	.
 	66.84265
 	222.16884
 	215.60326
 	320
 	chr12
 	85930837
 	85930850
 	CTCF_mouse
 	17.9212
 	+
 	2.800000e-07

 	5278
 	chr11
 	78267090
 	78267719
 	Peak_15
 	2240
 	.
 	66.48611
 	224.05933
 	217.43312
 	301
 	chr11
 	78267350
 	78267363
 	CTCF_mouse
 	17.9636
 	-
 	2.770000e-07

 	40800
 	chr11
 	98203663
 	98204470
 	Peak_8
 	2370
 	.
 	65.88831
 	237.03339
 	230.20671
 	426
 	chr11
 	98204100
 	98204113
 	CTCF_mouse
 	20.5697
 	-
 	2.070000e-08

[17]:

supports = [(chrom, 0, chromsizes[chrom]) for chrom in chromosomes]

flank = 600000
windows = snipping.make_bin_aligned_windows(
 binsize,
 sites['chrom'],
 (sites['start_m'] + sites['end_m'])//2,
 flank_bp=flank)
windows['strand'] = sites['strand_m']
windows = snipping.assign_regions(windows, supports)
windows = windows.dropna()

print(len(windows), 'windows, after assigning supports')
windows.head()

1000 windows, after assigning supports

[17]:

 	
 	chrom
 	start
 	end
 	lo
 	hi
 	strand
 	region

 	39612
 	chr2
 	27840000
 	29050000
 	2784
 	2905
 	+
 	chr2:0-181748087

 	0
 	chr14
 	73300000
 	74510000
 	7330
 	7451
 	-
 	chr14:0-125194864

 	8403
 	chr12
 	85330000
 	86540000
 	8533
 	8654
 	+
 	chr12:0-121257530

 	5278
 	chr11
 	77660000
 	78870000
 	7766
 	7887
 	-
 	chr11:0-121843856

 	40800
 	chr11
 	97600000
 	98810000
 	9760
 	9881
 	-
 	chr11:0-121843856

[18]:

stacks = {}
piles = {}
for cond in conditions:
 expected = pd.read_table(f'data/{long_names[cond]}.{binsize//1000}kb.expected.cis.tsv')
 snipper = snipping.ObsExpSnipper(clrs[cond], expected)

 stack = snipping.pileup(windows, snipper.select, snipper.snip)

 # mirror reflect snippets whose feature is on the opposite strand
 mask = np.array(windows.strand == '+', dtype=bool)
 stack[:, :, mask] = stack[::-1, ::-1, mask]

 stacks[cond] = stack
 piles[cond] = np.nanmean(stack, axis=2)

/home/nezar/miniconda3/envs/py36/lib/python3.6/site-packages/ipykernel_launcher.py:14: RuntimeWarning: Mean of empty slice

[19]:

gs = GridSpec(nrows=1, ncols=len(conditions) + 1, width_ratios=[20] * len(conditions) + [1])
plt.figure(figsize=(5 * len(conditions), 5))

opts = dict(
 vmin=-0.75,
 vmax=0.75,
 extent=[-flank//1000, flank//1000, -flank//1000, flank//1000],
 cmap='coolwarm'
)

for i, cond in enumerate(conditions):
 ax = plt.subplot(gs[i])
 img = ax.matshow(
 np.log2(piles[cond]),
 **opts)
 ax.xaxis.tick_bottom()
 if i > 0:
 ax.yaxis.set_visible(False)
 plt.title(long_names[cond])

ax = plt.subplot(gs[len(conditions)])
plt.colorbar(img, cax=ax)

[19]:

<matplotlib.colorbar.Colorbar at 0x7fa2ad90a128>

[image: ../_images/notebooks_old_06_snipping-pileups_10_1.png]

Inspect examples

[27]:

from ipywidgets import interact

gs = GridSpec(nrows=1, ncols=len(conditions) + 1, width_ratios=[20] * len(conditions) + [1])
n_examples = len(windows)

@interact(i=(0, n_examples-1))
def f(i):
 plt.figure(figsize=(5 * len(conditions), 5))
 for j, cond in enumerate(conditions):
 ax = plt.subplot(gs[j])
 img = ax.matshow(
 np.log2(stacks[cond][:, :, i]),
 **opts)
 ax.xaxis.tick_bottom()
 if i > 0:
 ax.yaxis.set_visible(False)
 plt.title(long_names[cond])
 plt.axvline(0, c='g', ls='--')
 plt.axhline(0, c='g', ls='--')

Piling up paired landmarks

[36]:

anchor_dist = 300000
anchor_flank = 10000
sites = pd.read_table('data/ctcf-sites.paired.300kb_flank10kb.tsv.1')

"convergent" orientation of paired CTCF motifs
sites = sites[(sites['strand1'] == '+') & (sites['strand2'] == '-')]

print(len(sites))
sites.head()

[40]:

snippet_flank = 250000

windows1 = snipping.make_bin_aligned_windows(
 binsize,
 sites['chrom1'],
 sites['mid1'],
 flank_bp=snippet_flank)
windows1['strand'] = sites['strand1']

windows2 = snipping.make_bin_aligned_windows(
 binsize,
 sites['chrom2'],
 sites['mid2'],
 flank_bp=snippet_flank)
windows2['strand'] = sites['strand2']

windows = pd.merge(windows1, windows2, left_index=True, right_index=True, suffixes=('1', '2'))
windows = snipping.assign_regions(windows, supports)
windows = windows.dropna()
windows.head()

[40]:

 	
 	chrom1
 	start1
 	end1
 	lo1
 	hi1
 	strand1
 	chrom2
 	start2
 	end2
 	lo2
 	hi2
 	strand2
 	region

 	0
 	chr11
 	97950000
 	98460000
 	9795
 	9846
 	+
 	chr11
 	98360000
 	98870000
 	9836
 	9887
 	-
 	chr11:0-121843856

 	1
 	chr2
 	27800000
 	28310000
 	2780
 	2831
 	+
 	chr2
 	28190000
 	28700000
 	2819
 	2870
 	-
 	chr2:0-181748087

 	2
 	chr8
 	72650000
 	73160000
 	7265
 	7316
 	+
 	chr8
 	73040000
 	73550000
 	7304
 	7355
 	-
 	chr8:0-131738871

 	3
 	chr7
 	74120000
 	74630000
 	7412
 	7463
 	+
 	chr7
 	74520000
 	75030000
 	7452
 	7503
 	-
 	chr7:0-152524553

 	4
 	chr9
 	77190000
 	77700000
 	7719
 	7770
 	+
 	chr9
 	77600000
 	78110000
 	7760
 	7811
 	-
 	chr9:0-124076172

[41]:

stacks = {}
piles = {}
for cond in conditions:
 expected = pd.read_table(f'data/{long_names[cond]}.{binsize//1000}kb.expected.cis.tsv')
 snipper = snipping.ObsExpSnipper(clrs[cond], expected)
 stack = snipping.pileup(windows, snipper.select, snipper.snip)
 stacks[cond] = stack
 piles[cond] = np.nanmean(stack, axis=2)

[42]:

gs = plt.GridSpec(nrows=1, ncols=len(conditions) + 1, width_ratios=[20] * len(conditions) + [1])
plt.figure(figsize=(6 * len(conditions), 6))

opts = dict(
 vmin=-0.5,
 vmax=0.5,
 extent=[-flank//1000, flank//1000, -flank//1000, flank//1000],
 cmap='coolwarm'
)

for i, cond in enumerate(conditions):
 ax = plt.subplot(gs[i])
 img = ax.matshow(
 np.log2(np.nanmean(stacks[cond], axis=2)), #piles[cond]),
 **opts)
 ax.xaxis.tick_bottom()
 if i > 0:
 ax.yaxis.set_visible(False)
 plt.title(long_names[cond])

ax = plt.subplot(gs[len(conditions)])
plt.colorbar(img, cax=ax)

plt.suptitle(f'convergent CTCF sites ({anchor_dist//1000} +/- {anchor_flank//1000})kb apart\n'
 f'Hi-C resolution = {binsize//1000}kb; # of pairs = {len(windows)}')

[42]:

<matplotlib.text.Text at 0x7fa2abd45eb8>

[image: ../_images/notebooks_old_06_snipping-pileups_17_1.png]

[]:

[]:

This page was generated with nbsphinx [https://nbsphinx.readthedocs.io/] from /home/docs/checkouts/readthedocs.org/user_builds/cooltools/checkouts/latest/docs/notebooks_old/06_snipping-pileups.ipynb [https://github.com/open2c/cooltools/blob/master//home/docs/checkouts/readthedocs.org/user_builds/cooltools/checkouts/latest/docs/notebooks_old/06_snipping-pileups.ipynb]

 Pileups #2

Pileups #2

[]:

downloading Hi-C data: beware, it is 21Gb big!

[1]:

%%bash
mkdir -p /tmp/pileup-example/
wget https://data.4dnucleome.org/files-processed/4DNFIB59T7NN/@@download/4DNFIB59T7NN.mcool -qO /tmp/pileup-example/HFFc6_DpnII.mcool
wget https://www.encodeproject.org/files/ENCFF401MQL/@@download/ENCFF401MQL.bed.gz -qO /tmp/pileup-example/HFF_Myc_CTCF_encode.conservative_idr_peaks.bed.gz

[77]:

import numpy as np

import pandas as pd

import matplotlib
import matplotlib.gridspec
import matplotlib.pyplot as plt

%matplotlib inline

plt.rcParams['pdf.fonttype'] = 'truetype'
plt.rcParams['svg.fonttype'] = 'none' # No text as paths. Assume font installed.

plt.rcParams['font.serif'] = ['Times New Roman']
plt.rcParams['font.sans-serif'] = ['Arial']
plt.rcParams['font.size'] = 14
plt.rcParams['font.family'] = 'sans-serif'
plt.rcParams['text.usetex'] = False

%config Completer.use_jedi = False

[2]:

import bioframe
import cooler
import cooltools
import cooltools.expected

[3]:

import bioframe

chromsizes = bioframe.fetch_chromsizes('hg38')
cens = bioframe.fetch_centromeres('hg38')
cens.set_index('chrom', inplace=True)
cens = cens.mid

GOOD_CHROMS = list(chromsizes.index[:23])

arms = [arm
 for chrom in GOOD_CHROMS
 for arm in ((chrom, 0, cens.get(chrom,0)),
 (chrom, cens.get(chrom,0), chromsizes.get(chrom,0)))
]
arms = pd.DataFrame(arms, columns=['chrom','start', 'end'])

[64]:

BINSIZE = 2000
clr=cooler.Cooler(f'/tmp/pileup-example/HFFc6_DpnII.mcool::/resolutions/{BINSIZE}')

[6]:

import multiprocess

with multiprocess.Pool(20) as pool:
 expected = cooltools.expected.diagsum(
 clr,
 list(arms.itertuples(index=False,name=None)),
 transforms={
 'balanced': lambda p: p['count'] * p['weight1'] * p['weight2']
 },
 map=pool.map
)

[30]:

expected_df = pd.concat([
 exp.reset_index().assign(chrom=reg[0], start=reg[1], end=reg[2])
 for reg, exp in expected.items()])

expected_df = expected_df.groupby(('chrom','diag')).aggregate({
 'n_valid':'sum',
 'count.sum':'sum',
 'balanced.sum':'sum'}).reset_index()

expected_df['balanced.avg'] = expected_df['balanced.sum'] / expected_df['n_valid']

/home/golobor/miniconda3/lib/python3.7/site-packages/ipykernel_launcher.py:5: FutureWarning: Interpreting tuple 'by' as a list of keys, rather than a single key. Use 'by=[...]' instead of 'by=(...)'. In the future, a tuple will always mean a single key.
 """

[8]:

import pybedtools
ctcf_peaks = pybedtools.BedTool('/tmp/pileup-example/HFF_Myc_CTCF_encode.conservative_idr_peaks.bed.gz').sort()
ctcf_motifs = pybedtools.BedTool('./encode_motifs.hg38.ctcf_known1.liftover.bed.gz').sort()
ctcf_motifs_w_peaks = ctcf_motifs.intersect(ctcf_peaks).to_dataframe()
ctcf_motifs_w_peaks['mid'] = (ctcf_motifs_w_peaks.start + ctcf_motifs_w_peaks.end) / 2

/home/golobor/miniconda3/lib/python3.7/site-packages/pybedtools/bedtool.py:3439: FutureWarning: read_table is deprecated, use read_csv instead, passing sep='\t'.
 return pandas.read_table(self.fn, *args, **kwargs)

[9]:

import cooltools.snipping

WINDOW_HALF_SIZE = 100000
snipping_windows = cooltools.snipping.make_bin_aligned_windows(
 BINSIZE,
 ctcf_motifs_w_peaks.chrom.values,
 ctcf_motifs_w_peaks.mid.values,
 WINDOW_HALF_SIZE
)

snipping_windows = cooltools.snipping.assign_regions(
 snipping_windows,
 list(arms.itertuples(index=False,name=None)))

[59]:

ICCF_snipper = cooltools.snipping.CoolerSnipper(clr)

with multiprocess.Pool(20) as pool:
ICCF_pile = cooltools.snipping.pileup(
snipping_windows,
ICCF_snipper.select, ICCF_snipper.snip,
map=pool.map)

[33]:

oe_snipper = cooltools.snipping.ObsExpSnipper(clr, expected_df)

with multiprocess.Pool(20) as pool:
 oe_pile = cooltools.snipping.pileup(
 snipping_windows,
 oe_snipper.select, oe_snipper.snip,
 map=pool.map)

[75]:

collapsed_pile_plus = np.nanmean(
 oe_pile[:, :, ctcf_motifs_w_peaks.strand=='+'], axis=2
)
collapsed_pile_minus = np.nanmean(
 oe_pile[:, :, ctcf_motifs_w_peaks.strand=='-'], axis=2
)

[78]:

plt.imshow(
 np.log2(collapsed_pile_plus),
 vmax = 0.5,
 vmin = -0.5,
 cmap='coolwarm')
plt.colorbar(label = 'log2 mean obs/exp')
ticks_pixels = np.linspace(0, WINDOW_HALF_SIZE*2//BINSIZE,5)
ticks_kbp = ((ticks-ticks[-1]/2)*BINSIZE//1000).astype(int)
plt.xticks(ticks_pixels, ticks_kbp)
plt.yticks(ticks_pixels, ticks_kbp)
plt.xlabel('relative position, kbp')
plt.ylabel('relative position, kbp')

[78]:

Text(0, 0.5, 'relative position, kbp')

[image: ../_images/notebooks_old_07_pileups2_14_1.png]

This page was generated with nbsphinx [https://nbsphinx.readthedocs.io/] from /home/docs/checkouts/readthedocs.org/user_builds/cooltools/checkouts/latest/docs/notebooks_old/07_pileups2.ipynb [https://github.com/open2c/cooltools/blob/master//home/docs/checkouts/readthedocs.org/user_builds/cooltools/checkouts/latest/docs/notebooks_old/07_pileups2.ipynb]

 Inner workings of the call-dots

Inner workings of the call-dots

[1]:

Setup the environment first

read: https://github.com/mirnylab/cooler/issues/138 for more details:

!export MKL_NUM_THREADS=1 - # not working in a notebook ((
instead do this, after making sure mkl is installed
import mkl
mkl.set_num_threads(1)

[2]:

are you developing?
turn module reloading on

%load_ext autoreload
%autoreload 2

[3]:

neccessary modules to be imported

import os.path as op
from scipy.stats import poisson
import pandas as pd
import numpy as np
import cooler

from cooltools import dotfinder

%matplotlib inline
import matplotlib.cm as cm
import matplotlib.pyplot as plt
import matplotlib.colors as colors
import matplotlib.ticker as ticker

[2]:

TODO: replace this with "wget some-real-data" to make notebook self-sufficient

input files to play with
pick Rao et al primary @10kb to enable comparison

what I have here is Rao et al 2014 sample for GM cells
the dataset that they refer to as "primary" in the paper
the cooler created using hic2cool tool
and what I have here is an older version before divisive/multiplicative
balancing weights situation happened
path = "/home/venevs/DOTS_TESTING/prim_rep_rao_Mar19"
basename = "GM12878_insitu_primary_30.KR"

this is a 10kb cooler file
and we should also have expected calculated for 10kb

COOL10="{}/{}.cool".format(path,basename)
EXP10="{}/{}.cis.expected".format(path,basename)

LOOP10="{}/cloops_{}.bedpe".format(path,basename)
HDF10=test_scores$TESTIDX_$BASENAME.10000.hdf
FLOOP10="{}/cloops_{}.bedpe.postprocess".format(path,basename)

RAOLOOPS="/home/venevs/DOTS_TESTING/rao_combined_hic/Rao2014_GM12878_primary_and_replicate_HiCCUPS_looplist.txt"
RAOLOOPS="/home/venevs/DOTS_TESTING/prim_rep_rao/Rao2014_GM12878_primary_HiCCUPS_looplist.txt"

keeping some of the relevant CLI commands here
useful for preprocessing cooler files - before calling dots

0. consider adding downloading command for Rao data e.g.
0. also condsider showing hic2cool usage here to turn .hic to .cool

1. re-balancing - cis-only is worth checking out at the very least ...
cooler balance -p {threads} --ignore-diags 1 --force --name 'wsnake' {input}::/resolutions/{res}

2. calculation of expected
cooltools compute-expected -p {threads} --weight-name 'wsnake' --drop-diags 1 {input[0]}::/resolutions/{res}

provide arguments to replace CLI interface

instead of providing command line arguments to the call-dots tool we are going to provide corresponding argumnets right in the notebook:

[5]:

specify parameters for call-dots
cool_path = COOL10
expected_path = EXP10
expected_name = 'balanced.avg'
nproc = 8
max_loci_separation = 1000000
max_nans_tolerated = 4
tile_size = 10000000
fdr = 0.1
dots_clustering_radius = 21000
verbose = True
balancing_weight_name = "weight"
output_scores = 'xxx'
output_hists = 'yyy'
output_calls = 'zzz'
score_dump_mode = 'parquet'
score_dump_mode = 'local'
temp_dir = './'
no_delete_temp = True

load cooler and expected

[6]:

clr = cooler.Cooler(cool_path)

expected_columns = ['chrom', 'diag', 'n_valid', expected_name]
expected_index = ['chrom', 'diag']
expected_dtypes = {
 'chrom': np.str,
 'diag': np.int64,
 'n_valid': np.int64,
 expected_name: np.float64
}
expected = pd.read_table(
 expected_path,
 usecols=expected_columns,
 index_col=expected_index,
 dtype=expected_dtypes,
 comment=None,
 verbose=verbose)
include Geoff's fix for the datatypes in expected

Tokenization took: 46.27 ms
Type conversion took: 19.94 ms
Parser memory cleanup took: 0.01 ms
Tokenization took: 31.56 ms
Type conversion took: 19.25 ms
Parser memory cleanup took: 0.00 ms
Tokenization took: 9.59 ms
Type conversion took: 5.80 ms
Parser memory cleanup took: 0.00 ms

we’ll do everyhting for ``chr1`` only to save time (reconsider it later …)

demonstration purposes only this way …

[7]:

beware of chromosome naming converntion, i.e. "chr1" vs "1" ...
expected = expected.loc[["1"]]

some validation Just making sure that expected anb cooler are “compatible” i.e. they refer to the same chromosomes and those chromosomes have the same length

[8]:

Input validation
unique list of chroms mentioned in expected_path
do simple column-name validation for now
get_exp_chroms = lambda df: df.index.get_level_values("chrom").unique()
expected_chroms = get_exp_chroms(expected)
if not set(expected_chroms).issubset(clr.chromnames):
 raise ValueError(
 "Chromosomes in {} must be subset of ".format(expected_path) +
 "chromosomes in cooler {}".format(cool_path))
check number of bins
compute # of bins by comparing matching indexes
get_exp_bins = lambda df, ref_chroms: (
 df.index.get_level_values("chrom").isin(ref_chroms).sum())
expected_bins = get_exp_bins(expected, expected_chroms)
cool_bins = clr.bins()[:]["chrom"].isin(expected_chroms).sum()
if not (expected_bins == cool_bins):
 raise ValueError(
 "Number of bins is not matching: ",
 "{} in {}, and {} in {} for chromosomes {}".format(
 expected_bins,
 expected_path,
 cool_bins,
 cool_path,
 expected_chroms))
if verbose:
 print("{} and {} passed cross-compatibility checks.".format(
 cool_path, expected_path))

/home/venevs/DOTS_TESTING/prim_rep_rao_Mar19/GM12878_insitu_primary_30.KR.cool and /home/venevs/DOTS_TESTING/prim_rep_rao_Mar19/GM12878_insitu_primary_30.KR.cis.expected passed cross-compatibility checks.

prepare some other parameters

[9]:

Prepare some parameters.
binsize = clr.binsize
loci_separation_bins = int(max_loci_separation / binsize)
tile_size_bins = int(tile_size / binsize)
balance_factor = 1.0 #clr._load_attrs("bins/weight")["scale"]

print("we are dealing with the data binned at {}".format(binsize))

clustering would deal with bases-units for now, so supress this for now
clustering_radius_bins = int(dots_clustering_radius/binsize)

pre-defined kernel types that are going to be used in the analysis
ktypes = ['donut', 'vertical', 'horizontal', 'lowleft']

we are dealing with the data binned at 10000

Kernels used for calculating local enrichment of a pixel

	Dots observed on Hi-C heatmaps as small and concentrated clusters of locally enriched pixels.

	Biologically relevant sizes of such clusters and their surroundings are empirically defined at ~50kb for the diameter of clusters, and ~100kb for the diameter of the local surrounding

	Several types of kernels (i.e. local environments) could be used to rule out unwanted enrichment types, e.g. elongated clusters, large corners, etc.

	One can choose from pre-defined set of kernels from Rao et al 2014, or provide custome ones

	Even for the predefined set of kernels one can control their parameters w and p, where 2w+1 is the outter dimensions of kernel’s footprint and 2p+1 is the inner one, the approximate size of an enriched cluster of pixels

	function recommend_kernel_params would yield recommended w and p for a given bin size, as in Rao et al 2014, otherwise feel free to experiment with those

[72]:

w,p = dotfinder.recommend_kernel_params(binsize)
print("Kernel parameters w={} p={}".format(w,p))

kernels = {k: dotfinder.get_kernel(w, p, k) for k in ktypes}
list of tile coordinate ranges
tiles = list(
 dotfinder.heatmap_tiles_generator_diag(
 clr,
 expected_chroms,
 w,
 tile_size_bins,
 loci_separation_bins
)
)

Kernel parameters w=5 p=2

[82]:

it is important to demonstrate filters here
consider moving plotting code elsewhere or simplify it significantly ...
split cell above and demonstrate kernels - it's nice:
def draw_kernel(kernel,
 axis,
 cmap='viridis'):
 # kernel:
 imk = axis.imshow(
 kernel[::-1,::-1],
 alpha=0.7,
 cmap=cmap,
 interpolation='nearest')
 # clean axis:
 axis.set_xticks([])
 axis.set_yticks([])
 axis.set_xticklabels('',visible=False)
 axis.set_yticklabels('',visible=False)
 axis.set_title("{} kernel".format(ktype),fontsize=16)
 # add a checkerboard to highlight pixels:
 checkerboard = np.add.outer(range(kernel.shape[0]),
 range(kernel.shape[1])) % 2
 # show it:
 axis.imshow(checkerboard,
 cmap='gray',
 interpolation='nearest',
 alpha=0.3)
 #
 return imk

fig = plt.figure(figsize=(12,2.5))
gs = plt.GridSpec(nrows=1,
 ncols=5,
 figure=fig,
 width_ratios=[1,1,1,1,0.1])

for i,ktype in enumerate(ktypes):
 kernel= kernels[ktype]
 ax = plt.subplot(gs[i])
 draw_kernel(kernel,ax)

colorbar and that's it:
ax = plt.subplot(gs[i+1])
cb = fig.colorbar(imk, cax=ax)
cb.ax.get_yaxis().set_major_locator(ticker.MaxNLocator(1))
cb.ax.set_yticklabels(['Excluded from calculation','Included in calculations'])

[82]:

[Text(1, 0, 'Excluded from calculation'),
 Text(1, 0, 'Included in calculations')]

[image: ../_images/notebooks_old_08_dot-calling-internals_17_1.png]

a little remark on the lowleft kernel: - by the definition of convolution, it implies integrating f(x)*g(-x) … - in other words the kernel is being “flipped” when it is applied to a matrix - we should try to make it explicit or hide it away on a better way

Getting to the calculations of locally-adjusted expected

	for demonstration and debugging purposes we are going to dump the dataframe with locally adjusted expected right in place (i.e. in memory).

	This might be also ok for smaller genomes and potentially for small subsets of large genomes.

	This is not recommended whatsoever for genome-wide dot-calling.

A side note, we’ve tried to store all of the values in a separate file, but practice shows that for large genomes even parquet/hdf5 are not fast enough. Thus using a 2-pass strategy seems to be the best option indeed.

2-pass: calculate locally-adjusted expected for each pixel and use this value immediately to build a histogram with predefined bins, then recalculate locally-adjusted expected values and again use them in place to select significantly enriched pixels.

	an example on how to store locally adjusted expected in a temporary file:

import tempfile
tmp_scores = tempfile.NamedTemporaryFile(
 suffix='.parquet',
 delete= False,
 dir='.')

	now calculate locally adjusted expected (not performed in the call-dots command line implementation):

loc_adj_exp = dotfinder.scoring_step(clr,
 expected,
 expected_name,
 "weight",
 tiles,
 kernels,
 max_nans_tolerated,
 loci_separation_bins,
 tmp_scores,
 nproc,
 score_dump_mode,
 verbose)

	histogramming using temporary input (this steps is performed in actual call-dots implementation and it involves de novo calculation of locally adjusted expected for each surveyed pixel):

gw_hist = dotfinder.histogramming_step(tmp_scores,
 score_dump_mode,
 kernels,
 ledges,
 output_path=None,
 nproc=1,
 verbose=False)

[13]:

locally adjusted returned in place for just 1 chromosome:
beware: this step is not performed in the actual call-dots CLI implementation
la_exp = dotfinder.scoring_step(clr,
 expected,
 expected_name,
 balancing_weight_name,
 tiles,
 kernels,
 1,
 loci_separation_bins,
 None,
 nproc,
 "local",
 verbose)

Preparing to convolve 49 tiles:
creating a Pool of 8 workers to tackle 49 tiles
returning local copy of the dataframe ...

that is how locally adjusted expected dataframe looks like:

	bin1_id

	bin2_id

	count

	la_exp.donut.value

	la_exp.vertical.value

	la_exp.horizontal.value

	la_exp.lowleft.value

	76

	87

	20

	16.343724585366036

	19.112339277607475

	14.789222300465001

	17.55971648783403

	76

	88

	29

	21.109446293886823

	23.76004284738352

	19.119195822013385

	23.30209962326733

	76

	89

	15

	17.254427190306977

	18.545853810657224

	14.695003640984938

	19.784933947834944

	76

	90

	21

	14.277047600786759

	14.642767228999286

	12.928217571836717

	17.27371365389384

	76

	91

	13

	11.22588212884422

	11.279966641429564

	10.064704945467405

	14.514049136987758

	here we use cooler-based bin1/2_id instead of actual genomic coordinates for compactness and performance reasons.

	Observed is recorded in the count columns, again as in the parent cooler-file.

	observer and all types of expected are expressed in the raw units in order to apply Poisson statistics to the data

Observed vs “locally-adjusted” expected

A scatter plot with observed vs expected should be a good “platform” for understanding what a dot-calling is:

[93]:

def quick_obs_exp_scatter(data,
 axis,
 xlabel='la_exp.donut.value',
 ylabel='count'):
 # obs exp
 # the base scatter:
 sct = axis.scatter(data[xlabel],
 data[ylabel],
 # color dots on the scatter by their genomic separation
 c=data['bin2_id']-data['bin1_id'],
 vmin=0,
 vmax = 100,
 cmap="YlOrRd_r")
 # we can add a visual of the lambda-chunking grid on top of obs/exp scatter ...
 # plt.vlines(ledges[1:-15],ymin=0.5,ymax=900,color='red')
 axis.set_xscale('log')
 axis.set_yscale('log')
 # limits
 axis.set_xlim(0.5,700)
 axis.set_ylim(0.5,1200)
 # labels
 axis.set_ylabel(ylabel)
 axis.set_xlabel(xlabel)
 # return axes
 return sct

fig = plt.figure(figsize=(7,5))
gs = plt.GridSpec(nrows=1,
 ncols=2,
 figure=fig,
 width_ratios=[1,0.1])

we might consider "downsampling" la_exp dataframe in order to make obs/exp scatter plot less busy:
data = la_exp.sample(frac=0.1)
ax = plt.subplot(gs[0])
sct = quick_obs_exp_scatter(data,ax)

y=x line to highlight the "enriched" pixels ...
ax.plot(ax.get_xlim(),ax.get_ylim(),'b-',label='obs=exp')
ax.legend(loc='best')

cbar
cb = plt.colorbar(sct,cax=plt.subplot(gs[1]))
cb.ax.get_yaxis().set_major_locator(ticker.MaxNLocator(1))
cb.ax.set_yticklabels(['Excluded from calculation','Included in calculations'])

enriched = data[data[ylabel]/data[xlabel]>1]
ax.scatter(enriched[xlabel],
enriched[ylabel],
s=80,
facecolors='none',
edgecolors='b')

[image: ../_images/notebooks_old_08_dot-calling-internals_23_0.png]

Obs vs exp scatter plot highlights the enriched pixels: - pixels that are above the blue line obs=exp are all “enriched”, i.e. for all of them obs is more than exp. - Problem is, such a naive way of extracting enriched interactions yields too many false positives - should we show a heatmap of all of such “enriched” pixels - to demonstrate that it’s not so good ?! - we need to do more rigorous statistical analysis to extract “significantly” enriched pixels instead.

Now let’s load in, some known called/annotated dots to see where they end up on the obs/exp scatter-plot

we would use this pre-called dots to see them on our obs/exp scatter plot, later

[14]:

let us read in some of the known dots to display stronger ones on the obs/exp scatter plot:
raodots = pd.read_csv(RAOLOOPS,sep='\t')
beware of the UCSC/NCBI chromosome naming conventions `X` vs `chrX` ...
raodots_chr1 = raodots[raodots['chr1']=='1']

do we need a notion of strength here ?
#let's quickly define some measure of strengths for the dots:
raodots_chr1['strength'] = raodots_chr1['o']/raodots_chr1['e_donut']
now sort and select only the strongest (according to this measure):
raodots_chr1_strong = raodots_chr1.sort_values(by=['o','strength'],ascending=False)

let's convert genomic coordinates into `cooler`-based bin_id-s:
bin1_ids = (raodots_chr1['x1']/binsize).astype('int')
bin2_ids = (raodots_chr1['y1']/binsize).astype('int')
beware Rao et al, use x1,x2 for start1,end1 and y1,y2 for start2,end2

now let's look up these called/annotated dots in our pre-calculated la_exp dataframe:
rao_dots_idxs = list(zip(bin1_ids,bin2_ids))
la_exp_indexed = la_exp.set_index(['bin1_id','bin2_id'])

these are the rao-dots that we have caculated locally adjusted expected for:
intersect_raodots = la_exp_indexed[la_exp_indexed.index.isin(rao_dots_idxs)]
we don't have for every rao-dot since we don't get close enough to diagonal and
potentially treat NaNs differently.

Extracting statistically significant interactions

starting from here it requires more cleaning/trimming down …

So how could one extract significantly enriched interactions instead of calling every marginally brighter pixel “enriched” ?

We have our null hypothesis: intensity of a HiC pixel is Poisson-distributed with a certain expected. In this case that would be locally-adjusted expected.

Thus for the dot-calling, we could estimate a p-value for every pixel based on its observed intensity and its expected intensity:

from scipy.stats import poisson

for k in ktypes:
 la_exp["la_exp."+k+".pval"] = 1.0 - \
 poisson.cdf(la_exp["count"],
 la_exp["la_exp."+k+".value"])

However going that route would be technically challenging for the further genome-wide calculations, so we can introduce the lambda-chunking procedure introduced in Rao et al 2014 to tackle technicall challenges and some issues associated with the wide dynamic range of the expected for the dot-calling (due to distance decay).

should we keep in some form or go straight to Rao procedure ?!

now let’s select pixels that are “significantly” brighter than their surroundings …

Just use naive p-value thresholding for simplicity and quick turn around.

And then see where such “bright” pixels end up on the obs/exp scatter plot depending on the p-value threshold

[1]:

arbitrary p-value threshold
p_th = 0.0001

let's test p-value for all of the 4 filters - feel free to play with individual filters/kernels as well:
signif_pvals = np.ones_like(la_exp["la_exp.donut.pval"].values,dtype=np.bool)
for k in ktypes:
 signif_pvals = signif_pvals & (la_exp["la_exp."+k+".pval"]<=p_th)

plotting - consider making it shorter:
sct = plt.scatter(sub_la_exp[xlabel],
 sub_la_exp[ylabel],
 # color dots on the scatter by their genomic separation
 c=sub_la_exp['bin2_id']-sub_la_exp['bin1_id'],
 vmin=0,
 vmax = 100,
 cmap="YlOrRd_r")

let's select pixels with "small" p-values:
kinda_signif_pixels = la_exp[signif_pvals]

plt.scatter(kinda_signif_pixels[xlabel],
 kinda_signif_pixels[ylabel],
 s=80,
 facecolors='none',
 edgecolors='b')

we can add a visual of the lambda-chunking grid on top of obs/exp scatter ...
plt.vlines(ledges[1:-15],ymin=0.5,ymax=900,color='red')

ax = plt.gca()
fig = plt.gcf()

ax.set_xscale('log')
ax.set_yscale('log')

ax.set_xlim(0.5,700)
ax.set_ylim(0.5,1200)

ax.set_ylabel("count")
ax.set_xlabel("la_exp value")

fig.colorbar(sct)

Rao et al 2014 statistics is more nuanced

	Simple p-value thresholding should be replaced to more “productive” FDR, which is more tractable and better suited for the job.

	Another argument is that it is “unfair” to treat all of the pixels with the same statitical testing (multiple hypothesis) - the range of “expecteds” is “too wide”

	2nd point is addressed by spliting the pixels in the groups by their localy adjusted expected - the so-called \(\lambda\)-chunking

	Another nuance of \(\lambda\)-chunking is that Rao et al are using the upper boundary of each \(\lambda\)-chunk as an expected for every pixel in the chunk (clearly for technical reasons) - we could see how that affects the significance by itself.

[99]:

The essence of lambda-chunking - let's split the surveyed pixels into "chunks" based on
their la-expected value and do multiple hypothesis testing separately for these chunks.
nlchunks = dotfinder.HiCCUPS_W1_MAX_INDX
base = 5 ** (1/3)
ledges = np.concatenate((
 [-np.inf],
 np.logspace(0, nlchunks - 1, num=nlchunks, base=base, dtype=np.float),
 [np.inf]))

###
plt.plot(ledges,np.zeros_like(ledges),'r|')
plt.title("the λ-chunks")
plt.xlabel("# of interactions")
fig = plt.gcf()
fig.set_size_inches(6,1)
ax = plt.gca()
ax.set_yticks([])
ax.set_xlim(-100,8500)

consider embedding this picture to the markdown section ...

[99]:

(-100, 8500)

[image: ../_images/notebooks_old_08_dot-calling-internals_31_1.png]

[100]:

here are trying to see the effect of using the chunk boundary as an expected instread of actual expected for a given pixel:

we can exaggerate the "ledges", i.e. make lambda-chunks very wide to see the side effect of replacing expected within each chunk

for k in ktypes:
 la_exp["la_exp."+k+".value.chunked"] = ledges[np.digitize(la_exp["la_exp."+k+".value"],ledges)]

recalculate the p-values to take 4th item into account:
for k in ktypes:
 la_exp["la_exp."+k+".pval"] = 1.0 - \
 poisson.cdf(la_exp["count"],
 la_exp["la_exp."+k+".value.chunked"])

arbitrary p-value threshold
p_th = 0.0001

let's test p-value for all of the 4 filters - feel free to play with individual filters/kernels as well:
signif_pvals = np.ones_like(la_exp["la_exp.donut.pval"].values,dtype=np.bool)
for k in ktypes:
 signif_pvals = signif_pvals & (la_exp["la_exp."+k+".pval"]<=p_th)

plotting - consider making it shorter:
sct = plt.scatter(sub_la_exp[xlabel],
 sub_la_exp[ylabel],
 # color dots on the scatter by their genomic separation
 c=sub_la_exp['bin2_id']-sub_la_exp['bin1_id'],
 vmin=0,
 vmax = 100,
 cmap="YlOrRd_r")

let's select pixels with "small" p-values:
kinda_signif_pixels = la_exp[signif_pvals]

plt.scatter(kinda_signif_pixels[xlabel],
 kinda_signif_pixels[ylabel],
 s=80,
 facecolors='none',
 edgecolors='b')

we can add a visual of the lambda-chunking grid on top of obs/exp scatter ...
plt.vlines(ledges[1:-15],ymin=0.5,ymax=900,color='red')

ax = plt.gca()
fig = plt.gcf()

ax.set_xscale('log')
ax.set_yscale('log')

ax.set_xlim(0.5,700)
ax.set_ylim(0.5,1200)

ax.set_ylabel("count")
ax.set_xlabel("la_exp value")

fig.colorbar(sct)

[100]:

<matplotlib.colorbar.Colorbar at 0x7f6c857a79b0>

[image: ../_images/notebooks_old_08_dot-calling-internals_32_1.png]

Assigning pixels to :math:`lambda`-chunks:

	After defining the bins for the expected (boundaries of \(\lambda\)-chunks) let’s actually chunk the data

	this step involves de novo calculation of locally adjusted expected

	l.a. expected is used to build histograms of observed data

[101]:

gw_hist = dotfinder.scoring_and_histogramming_step(clr,
 expected,
 expected_name,
 balancing_weight_name,
 tiles,
 kernels,
 ledges,
 max_nans_tolerated,
 loci_separation_bins,
 nproc,
 verbose)

Preparing to convolve 49 tiles:
creating a Pool of 8 workers to tackle 49 tiles

determine thresholds using the fdr thing …

[we should understand a little better - what is going on here with the multiple hypothesis testing, see https://github.com/mirnylab/cooltools/issues/82]

long story short: - for each \(\lambda\)-chunk we are calculating q-values in an efficient way, skipping calculations of p-values for each surveyed pixel - in part this is achieved by using upper boundary of each \(\lambda\)-chunk as an expected for every pixel in this chunk - and in part the efficiency comes from collapsing identical observed values, i.e. histogramming - to be checked: q-values > 1.0 seem to be weird - we need to check if that is ok - also to be comared with the
stats-packages implementations - just in case, e.g. from statsmodels.stats import multitest; multitest.multipletests(pvals,alpha=0.99,method="fdr_bh")

[129]:

this determines observed thresholds for each chunk and corresponding q-values for every observed value
threshold_df, qvalues = dotfinder.determine_thresholds(
 kernels, ledges, gw_hist, 0.99)

overview of the 2D histogram

x-bins corresponding to the \(\lambda\)-chunks and y-bins correspodning to the observed counts …

[137]:

fig = plt.gcf()
fig.set_size_inches(10,30)
plt.imshow(np.log(gw_hist["donut"]),aspect=0.05)
ax = plt.gca()
ax.plot(np.arange(threshold_df["donut"].values.size)-0.05,threshold_df["donut"].values,color='r',marker="_",linestyle=":")

ax.set_ylabel("observed counts")
ax.set_xlabel("lambda-chunks")

/home/venevs/miniconda3/envs/dots-stable/lib/python3.6/site-packages/ipykernel_launcher.py:3: RuntimeWarning: divide by zero encountered in log
 This is separate from the ipykernel package so we can avoid doing imports until

[137]:

Text(0.5, 0, 'lambda-chunks')

[image: ../_images/notebooks_old_08_dot-calling-internals_38_2.png]

a histogram for a particular :math:`lambda`-chunk

[140]:

binid = 7
print(gw_hist["donut"].iloc[:,binid].values.sum())
hs = np.clip(gw_hist["donut"].iloc[:,binid].values,a_min=None,a_max=10000)
hs = np.log(gw_hist["donut"].iloc[:,binid].values)
plt.bar(gw_hist["donut"].iloc[:,binid].index,hs)
plt.bar(threshold_df["donut"].iloc[binid],hs.max(),width=10,color='red')
plt.gca().set_ylim(0,1)
plt.gca().set_xlim(0,60)
gw_hist["donut"].iloc[:,20]

204896

[140]:

<BarContainer object of 1 artists>

[image: ../_images/notebooks_old_08_dot-calling-internals_40_2.png]

now extract “significant” pixels using the defined thresholds_df and the same parquet file with the score dump as for the histogramming step

[143]:

filtered_pixels = dotfinder.scoring_and_extraction_step(clr,
 expected,
 expected_name,
 balancing_weight_name,
 tiles,
 kernels,
 ledges,
 threshold_df,
 max_nans_tolerated,
 balance_factor,
 loci_separation_bins,
 None,
 nproc,
 verbose)

print("Number of filtered pixels {}".format(len(filtered_pixels)))

Preparing to convolve 49 tiles:
creating a Pool of 8 workers to tackle 49 tiles
Number of filtered pixels 4013

[145]:

xlabel = 'la_exp.donut.value'
ylabel = 'count'

we might consider "downsampling" la_exp dataframe in order to make obs/exp scatter plot less busy:
sub_la_exp = la_exp.sample(frac=0.1)

sct = plt.scatter(sub_la_exp[xlabel],
 sub_la_exp[ylabel],
 # color dots on the scatter by their genomic separation
 c=sub_la_exp['bin2_id']-sub_la_exp['bin1_id'],
 vmin=0,
 vmax = 100,
 cmap="YlOrRd_r")

plt.scatter(filtered_pixels[xlabel],
 filtered_pixels[ylabel],
 s=80,
 facecolors='none',
 edgecolors='b')

we can add a visual of the lambda-chunking grid on top of obs/exp scatter ...
plt.vlines(ledges[1:-15],ymin=0.5,ymax=900,color='red')

ax = plt.gca()
fig = plt.gcf()

ax.set_xscale('log')
ax.set_yscale('log')

ax.set_xlim(0.5,700)
ax.set_ylim(0.5,1200)

ax.set_ylabel("count")
ax.set_xlabel("la_exp value")

fig.colorbar(sct)

[145]:

<matplotlib.colorbar.Colorbar at 0x7f6c8071e1d0>

[image: ../_images/notebooks_old_08_dot-calling-internals_43_1.png]

Clustering “significantly” enriched pixels

annotate filtered pixeles and cluster them -> get centroids after that to proceed with post-processing …

[40]:

filtered_pixels_qvals = dotfinder.annotate_pixels_with_qvalues(filtered_pixels,
 qvalues,
 kernels)

[42]:

filtered_pixels_annotated = cooler.annotate(filtered_pixels_qvals, clr.bins()[:])
centroids = dotfinder.clustering_step(
 filtered_pixels_annotated,
 expected_chroms,
 dots_clustering_radius,
 verbose)
print("Number of clustered pixels, i.e. centroids {}".format(len(centroids)))

/home/venevs/miniconda3/envs/dots-latest/lib/python3.6/site-packages/sklearn/cluster/birch.py:77: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.
 node1_dist, node2_dist = dist[[farthest_idx]]

Clustering is completed:
6296 clusters detected
3.42+/-3.53 mean size

Clustering is over!
Number of clustered pixels, i.e. centroids 6296

[45]:

final_out = dotfinder.thresholding_step(centroids)

[46]:

len(final_out)

[46]:

2327

Browsing “called” dots on a heatmap

stuff that require clean up, but might be usefull in general

[21]:

plt.imshow(np.log(clr.matrix()[18030:18100,18030:18100]),cmap='YlOrRd')
plt.scatter(53,18,s=80, facecolors='none', edgecolors='b')

bin1,bin2 = 18030+18,18030+53

bin1_n,bin2_n = 18030+23,18030+49

bin1,bin2 = 24322, 24334

plt.imshow(np.log(clr.matrix(balance=True)[bin1-20:bin1+20,bin2-20:bin2+20]),cmap='YlOrRd')

something to have in mind - is the difference between JUicer balancing and cooler balacning ...
MAD max filtering in particular
in Juicer some of thesparse/low coverage regions are kept - what re the effects on the distriubtions, etc
to be seen
here is the region for reference: chr1:242,019,651-244,387,558 & chr1:242,713,339-243,695,154 [offset 0,0:0,0]

dddd = cccc[(cccc['bin1_id']==bin1)&(cccc['bin2_id']==bin2)]
eeee = cccc[(cccc['bin1_id']==bin1_n)&(cccc['bin2_id']==bin2_n)]

(cccc['bin2_id']-cccc['bin1_id']).min()

/home/venevs/miniconda3/envs/dots-stable/lib/python3.6/site-packages/ipykernel_launcher.py:11: RuntimeWarning: divide by zero encountered in log
 # This is added back by InteractiveShellApp.init_path()

[21]:

<matplotlib.image.AxesImage at 0x7f3b8ccf1ac8>

[image: ../_images/notebooks_old_08_dot-calling-internals_50_2.png]

[73]:

also supplementary stuff to note
about the previous point - how do we ended up having super small la_exp at small genomic separatrions ...
xlabel = 'la_exp.donut.value'
ylabel = 'count'

plt.scatter(la_exp['bin2_id']-la_exp['bin1_id'],(la_exp[xlabel]))
plt.scatter(dddd[xlabel],dddd[ylabel], s=80, facecolors='none', edgecolors='r')
plt.scatter(eeee[xlabel],eeee[ylabel], s=80, facecolors='none', edgecolors='y')

ax = plt.gca()

ax.set_xlabel("genomic separation")
ax.set_ylabel("la_exp value")

[73]:

Text(0, 0.5, 'la_exp value')

[image: ../_images/notebooks_old_08_dot-calling-internals_51_1.png]

[]:

This page was generated with nbsphinx [https://nbsphinx.readthedocs.io/] from /home/docs/checkouts/readthedocs.org/user_builds/cooltools/checkouts/latest/docs/notebooks_old/08_dot-calling-internals.ipynb [https://github.com/open2c/cooltools/blob/master//home/docs/checkouts/readthedocs.org/user_builds/cooltools/checkouts/latest/docs/notebooks_old/08_dot-calling-internals.ipynb]

_images/notebooks_compartments_and_saddles_30_0.png
(AA + BB) / (AB + BA)

10

saddle strength profile

2.5

5.0

75 100 125
extent

15.0

17.5

20.0

_images/notebooks_contacts_vs_distance_17_0.png
-
|
o
—

b
o
-

T b T i
o o o o
- - - -

Aduanbauy 1oe3U0D D)

106 107
separation, bp

10°

10*

_images/notebooks_compartments_and_saddles_16_0.png
1072

sapuanbay papaLiod

Ed

107*

107°

100

200
300

ANO0S-0:Z4Y

400

500

_images/notebooks_compartments_and_saddles_27_1.png
fouanbaiy 12e3U00 pa1adxa/paniasqo sbesane

~ - 3
,‘

_images/notebooks_contacts_vs_distance_30_0.png
107!

1072

7 1 7
o o o
— — —

Aduanbauy 1oe3U0D D)

hi
o
-

1077

-0.5

-1.0

adojs

-1.5

10° 106 107 108
separation, bp

10*

103

_images/notebooks_contacts_vs_distance_34_0.png
average interactions between chromosomal arms
107!

-
)
o

._.
2
L

IC contact frequency
g

._.
2
4

._.
2
5

10° 107
separation, bp

_images/notebooks_contacts_vs_distance_23_0.png
107!

1072

T b i
o o o
- - -

Aduanbauy 1oe3U0D D)

1076

1077

106 107 108
separation, bp

10°

10*

_images/notebooks_contacts_vs_distance_25_0.png
107!

1072

T b i
o o o
- - -

Aduanbauy 1oe3U0D D)

1076

1077

106 107 108
separation, bp

10°

10*

_images/notebooks_contacts_vs_distance_39_0.png
average interactions
between chromosomes

6.6x 107
chr2 6.4%1078
62 %108

6x 1078

chr17 5.8 x 108

5.6x 1078

IC contact frequency

_images/notebooks_contacts_vs_distance_45_0.png
102

=
o =
! (=]
~)

IC contact frequency
)
L

chr2_p

—— 100%, 83378597 reads)
—— 0.01%, 8383 reads)
= 0.1%, 83182 reads)

104 10° 106 107 108
separation, bp

_images/notebooks_contacts_vs_distance_47_0.png
10?

=
o =
| (=]
~)

IC contact frequency
S

chr2_p

—— 100%, 83378597 reads
—— 0.01%, 8383 reads
— 0.1%, 83182 reads

10*

10° 106 107 108
separation, bp

nav.xhtml

 Table of Contents

 		
 Getting started

 		
 Visualization

 		
 Contacts vs distance

 		
 Compartments & Saddleplots

 		
 Insulation & boundaries

 		
 Dots & focal enrichment

 		
 Pileups and average features

 		
 Command line interface

 		
 CLI Reference

 		
 cooltools

 		
 coverage

 		
 dots

 		
 eigs-cis

 		
 eigs-trans

 		
 expected-cis

 		
 expected-trans

 		
 genome

 		
 insulation

 		
 pileup

 		
 random-sample

 		
 rearrange

 		
 saddle

 		
 virtual4c

 		
 API Reference

 		
 subpackages

 		
 cooltools.lib package

 		
 cooltools.api.coverage module

 		
 coverage()

 		
 cooltools.api.directionality module

 		
 directionality()

 		
 cooltools.api.dotfinder module

 		
 adjusted_exp_name()

 		
 annotate_pixels_with_qvalues()

 		
 bp_to_bins()

 		
 clust_2D_pixels()

 		
 cluster_filtering_hiccups()

 		
 clustering_step()

 		
 determine_thresholds()

 		
 dots()

 		
 extract_scored_pixels()

 		
 generate_tiles_diag_band()

 		
 get_adjusted_expected_tile_some_nans()

 		
 histogram_scored_pixels()

 		
 is_compatible_kernels()

 		
 nans_inkernel_name()

 		
 recommend_kernels()

 		
 score_tile()

 		
 scoring_and_extraction_step()

 		
 scoring_and_histogramming_step()

 		
 tile_square_matrix()

 		
 cooltools.api.eigdecomp module

 		
 cis_eig()

 		
 eigs_cis()

 		
 eigs_trans()

 		
 trans_eig()

 		
 cooltools.api.expected module

 		
 blocksum_pairwise()

 		
 combine_binned_expected()

 		
 count_all_pixels_per_block()

 		
 count_all_pixels_per_diag()

 		
 count_bad_pixels_per_block()

 		
 count_bad_pixels_per_diag()

 		
 diagsum_from_array()

 		
 diagsum_pairwise()

 		
 diagsum_symm()

 		
 expected_cis()

 		
 expected_trans()

 		
 genomewide_smooth_cvd()

 		
 interpolate_expected()

 		
 lattice_pdist_frequencies()

 		
 logbin_expected()

 		
 make_block_table()

 		
 make_diag_table()

 		
 make_diag_tables()

 		
 per_region_smooth_cvd()

 		
 cooltools.api.insulation module

 		
 calculate_insulation_score()

 		
 find_boundaries()

 		
 get_n_pixels()

 		
 insul_diamond()

 		
 insulation()

 		
 cooltools.api.saddle module

 		
 digitize()

 		
 saddle()

 		
 saddle_strength()

 		
 saddleplot()

 		
 cooltools.api.sample module

 		
 sample()

 		
 sample_pixels_approx()

 		
 sample_pixels_exact()

 		
 cooltools.api.snipping module

 		
 CoolerSnipper

 		
 ExpectedSnipper

 		
 ObsExpSnipper

 		
 expand_align_features()

 		
 make_bin_aligned_windows()

 		
 pileup()

 		
 cooltools.api.virtual4c module

 		
 virtual4c()

 		
 Release notes

 		
 Upcoming release

 		
 v0.6.1

 		
 Maintenance

 		
 v0.6.0

 		
 New features

 		
 API changes

 		
 Maintenance

 		
 v0.5.4

 		
 Maintenance

 		
 v0.5.3

 		
 Maintenance

 		
 v0.5.2

 		
 API changes

 		
 CLI changes

 		
 Documentation

 		
 Maintenance

 		
 Other

 		
 v0.5.1

 		
 API changes

 		
 Maintenance

 		
 v0.5.0

 		
 API changes

 		
 CLI changes

 		
 Maintenance

 		
 v0.4.0

 		
 v0.3.2

 		
 v0.3.0

 		
 v0.2.0

 		
 v0.1.0

_images/notebooks_dots_16_1.png
donut kernel vertical kernel horizontal kernel lowleft kernel

_images/notebooks_dots_18_0.png
donut kernel vertical kernel horizontal kernel lowleft kernel

_images/notebooks_contacts_vs_distance_48_0.png
slope

0.0
-0.5
-1.0
-1.5
-2.0

chr2_p

10*

10° 106
separation, bp

107

108

= 100%, 83378597 reads
—— 0.01%, 8383 reads
—— 0.1%, 83182 reads

_images/notebooks_dots_13_0.png
34.2Mb

34.4Mb

34.6 Mb

34.8 Mb

35 Mb

35.2Mb

342Mb 344Mb 346Mb 348Mb 35Mb 352Mb

1072

1073

1074

corrected frequencies

_images/notebooks_insulation_and_boundaries_11_1.png
200 kb

0b

-1

10.5 Mb 11 Mb 11.5 Mb 12 Mb 12.5 Mb 13 Mb

—— Window 30000 bp

107t

1072

10-%

_images/notebooks_insulation_and_boundaries_13_0.png
—— Window 30000 bp

—— Window 50000 bp —— Window 100000 bp —— Window 250000 bp

107t

1072

10-%

_images/notebooks_dots_21_0.png
34.2Mb

34.4Mb

34.6 Mb

34.8 Mb

35 Mb

35.2Mb

342Mb 344Mb 346Mb 348Mb 35Mb 352Mb

1072

1072

107*

corrected frequencies

_images/notebooks_dots_9_0.png
34.2Mb

34.4Mb

34.6 Mb

34.8 Mb

35 Mb

35.2Mb

342Mb 344Mb 346Mb 348Mb 35Mb 352Mb

1072

1073

1074

corrected frequencies

_images/notebooks_insulation_and_boundaries_18_1.png
200 kb

0b

10.5 Mb 11 Mb 11.5 Mb 12 Mb 12.5 Mb 13 Mb

—— Window 30000 bp e Weak boundaries e Strong boundaries

107t

1072

10-%

_images/notebooks_insulation_and_boundaries_21_0.png
boundaries # boundaries # boundaries

boundaries

50

Window BOkm

50

25

40

20

Window 100kb

20

Window 250kb

1074 10 1072 107t 10° 10t
Boundary strength

_images/notebooks_insulation_and_boundaries_23_1.png
boundaries # boundaries # boundaries

boundaries

50

Window 30kb
1157 boundaries (Otsu)
1699 boundaries (Li)

b

Window 50kb
930 boundaries (Otsu)
1439 boundaries (Li)

Window 100kb
648 boundaries (Otsu)
963 boundaries (Li)

Window 250kb
382 boundaries
574 boundari

1074 10 1072 107t 10°
Boundary strength

10t

_images/notebooks_insulation_and_boundaries_38_0.png
CTCF ChiIP-Seq mean fold change over input

-50.0 -40.0 -30.0 -20.0 -10.0 0.0 10.0 20.0 30.0 40.0 50.0
Distance from boundary, kbp

_images/notebooks_insulation_and_boundaries_43_0.png
300 kb
200 kb
100 kb

0b

107!

1072

_images/notebooks_insulation_and_boundaries_31_1.png
Li threshold

~=- Otsu threshold

) 2 T
B B o
B

ndul J9A0 JUBWYILUS 41D

10 1072 107! 10° 10!

1074

Boundary strength

_images/notebooks_insulation_and_boundaries_33_1.png
40

20

[CTCF Chip/input = 2.0
[CTCF Chip/input < 2.0
[all boundaries

1074 10 1072 107t 10°
Boundary strength

10t

_images/notebooks_old_03_eigendecomposition_11_1.png
0

02

04

05

-0

-0

_images/notebooks_old_03_eigendecomposition_12_2.png
(AA+BB)/ (AB + BA)

5

0

‘saddle strength profile

NipblKO / Wildtype

JE——
— NpoKo

eovchment

7

®

15

18

1

12

"

0

0

=

W

7+ & § w ® ®w ®

_images/notebooks_old_01_scaling-curves_7_1.png
pair frequency

10

10

10

107

10

10

1010

WT repl, chrl

10 107 10 10° 10° 10° 10
genomic separation s, bp

_images/notebooks_old_02_expected_10_0.png
10

Pls)

— Widtype

o

bt

10

10

10

107

10°

v 10
Separation, bp

10°

_images/notebooks_old_03_eigendecomposition_9_1.png
E1 NipblKO.

20

15

0

05

0

20,

%0

ED

Ex)

=5

0
£1 Widype

&

o

s

20

o

2000

200

£)
£ rank idtype

20

s

150

s

00

s

50

25

oo

_images/notebooks_old_04_saddle-plots_12_1.png
axa/sqo z60]

255883 °9% 797

—— —

_images/notebooks_old_03_eigendecomposition_6_1.png
1000

mm9, 100kb bins

=]

=

_images/notebooks_old_05_insulation-score_10_0.png
NipbIkO.

_images/notebooks_old_05_insulation-score_5_1.png
log2(insul) @100kb ; window=500kb log10(peak prom) @100kb ; window-

i = e
= =
=1 npsico 0 =1 widype

00

200 20

200

50
1500
00

1000
»

0
o o

_images/notebooks_old_04_saddle-plots_7_1.png
T H 3 1] 5 3

chrl position, bp

107

_images/notebooks_old_04_saddle-plots_9_1.png
EL digitized

chrl. position, bp

107

_images/notebooks_old_05_insulation-score_7_1.png
NpbIKO.

20

15

0

05

0

bog2_insulation_score_500000

o

2

00

Nptiko

02

a

0

drectionality_index_500000

E T}
Widtype

"

©

o

_images/notebooks_old_05_insulation-score_6_0.png
TAM

Wildtype

[——

og2 nsul

og2 nsul

NpbIkO

R ———

R ———

logz insul

_images/notebooks_old_05_insulation-score_7_0.png
20

15

0

05

0

bog2_insulation_score_500000

o

2

00

02

a

drectionality_index_500000

oz o w0 o @
Widtype

"

©

o

_images/notebooks_old_06_snipping-pileups_17_1.png
‘convergent CTCF sites (300 +/- 10)kb apart
Hi.C resolution = 10Kb; # of pairs = 11276

Widype NpbiIkO

s

02

00

o2

04

_images/notebooks_old_07_pileups2_14_1.png
dxe/sqo ueaw z6o|
& =

+ o 9
S s s T 79

[e—

50

)
s
°8
g
o
2
5
2

50

100

100

g 8 ° @

day ‘vosod anyejal

_images/notebooks_old_05_insulation-score_9_0.png
Wildtype TAM NipbIkO.

o .

@0

1000

1500

200

200

00

05

00—

_images/notebooks_old_06_snipping-pileups_10_1.png
s

s

02

00

2

04

00

_images/notebooks_old_08_dot-calling-internals_31_1.png
the A-chunks

0

1000

200 3000 4000 5000 00 7000 €000
of interactions,

_images/notebooks_old_08_dot-calling-internals_32_1.png
une

p value

_images/notebooks_old_08_dot-calling-internals_17_1.png
donut kernel vertical kernel horizontal kernel lowleft kernel

. . . . I“mm"mum"S
Excluded from calculation

_images/notebooks_old_08_dot-calling-internals_23_0.png
count

w— obs=exp
o ot
100
4
100
.
ot
e
- "
100 re30m 00 o
100 Y e

la_exp.donut value

100

_images/notebooks_old_08_dot-calling-internals_38_2.png
20

00

Sun0> paniasqo

&0

£

B3

=

B
lambda-chunks

_images/notebooks_old_08_dot-calling-internals_40_2.png
00

00

000

2000

20

60

&0

a0

_images/notebooks_command_line_interface_26_0.png
10t

dxa/sqo

=)
]

o o
& @

AKiobajed ajppes

S

107t

saddle category

_images/notebooks_command_line_interface_40_0.png
dxa/sqo

10t

=)
]

107t

o o =]
) A

-100
100

3 ‘193udd dnajid woly 3950

o
IS}
=2

offset from pileup center, kb

_images/notebooks_command_line_interface_8_0.png
(Kouanbayy 1oe3u00 3AnefR) 0T 6o

<

m

le8

0.0

05

S

15

21eU1PI00D ZIYD

2.0

2.0

15

10

05

0.0

le8

chr2 coordinate

_images/notebooks_pileup_CTCF_19_1.png
ChIP-Seq fold-change over input

Mot score

Al peaks
“op by Mot score

Tp by FC score

Ordinary peaks

op by both scores

—— Regression line, R value: 048

_images/notebooks_pileup_CTCF_26_1.png
relative position, kbp

relative position, kbp

_images/notebooks_old_08_dot-calling-internals_50_2.png
2

=

E

)

_images/notebooks_old_08_dot-calling-internals_51_1.png
la_exp value

0

20

150

] D E] E] 150
‘genomic separation

_images/notebooks_pileup_CTCF_42_0.png
dxa/sq0 ueaw z60]

883880745 7

———— —

da “wonisod angelal

relative position, kbp

_images/notebooks_viz_12_0.png
position, chrom#
chr17

bin#

€
5
8
H
e

position,

_images/notebooks_pileup_CTCF_31_1.png
dxa/sq0 ueaw z60]

258839 9% 97 7

———— —

oy ‘uonsod annefas

relative position, kbp

_images/notebooks_pileup_CTCF_36_1.png
relative position, kbp

Top by both scores group

Ordinary peaks group

relative position, kbp

relative position, kbp

_images/notebooks_viz_14_0.png
chr17

chr2

2500

2000

1500

1000

500

raw counts

position, Mb

chr17

2500

2000

1500 £

raw count:

1000

500

¢chr17:30,000,000-60,000,000

2500
2000

1500 £

raw cous

1000

500

_images/notebooks_old_08_dot-calling-internals_43_1.png
count

10

107

10

100

10°

10
la_exp value

10

100

2

_images/notebooks_viz_28_1.png
200000

100000

Coverage

0.9

coverage ratio

0.8

full matrix

— ds
—— total

1071

2

S

107*

corrected frequencies

_images/notebooks_viz_30_2.png
corrected adaptively coarsegrained interpolated

31Mb 32Mb 33Mb 34Mb 35Mb 30Mb 31Mb 32Mb 33Mb 34Mb 35Mb 30Mb 31Mb 32Mb 33Mb 34Mb 35Mb

corrected frequencies

_images/notebooks_viz_20_0.png
30 Mb

35 Mb

40 Mb

45 Mb

50 Mb

55 Mb

60 Mb
30 Mb

35 Mb

40 Mb

45 Mb

50 Mb

55 Mb

60 Mb

30 Mb

200

175

150

125

S
3
counts.

7

25

10°

102

counts

10!

100

200

175

150

125

7

25

10°

102

10!

100

counts

counts

_images/notebooks_viz_25_0.png
raw

balanced

0.004

0.002

full matrix

11
A |: W 1

0 50 100 150 200 250 300
position, bins

10%

10°

g
raw counts

10!

100

1071

2

S

107*

corrected freqs

chr17:30,000,000-32,000,000

w
5

3.20
0.04

Lt b

30 MB0.25 18D.5 14D.75 MB1 MBL.25 b.5 Bb.75 M2 Mb
chr17 position, bp

10%

10°

g
raw counts

10!

100

1071

2

S

107*

corrected frequencies

_static/file.png

_static/minus.png

_images/notebooks_viz_16_0.png
chr17

chr2

10¢

10°

10?

10t

100

raw counts

position, Mb

chr17

B PP PP E
AR RSP
position, Mb

10¢

10°

10?

10t

100

raw counts

¢chr17:30,000,000-60,0